
MOD p POINTS ON SHIMURA VARIETIES OF PARAHORIC LEVEL

POL VAN HOFTEN, WITH AN APPENDIX BY RONG ZHOU

Abstract. We study the Fp-points of the Kisin–Pappas integral models of Shimura varieties of Hodge
type with parahoric level. We show that if the group is quasi-split, then every isogeny class contains
the reduction of a CM point, proving a conjecture of Kisin–Madapusi-Pera–Shin. We furthermore show
that the mod p isogeny classes are of the form predicted by the Langlands–Rapoport conjecture (cf.
Conjecture 9.2 of [47]) if either the Shimura variety is proper or if the group at p is unramified. An
important ingredient in our work is a global argument that allows us to reduce the conjecture to the case
of very special parahoric level. To deal with this case, we use a result of Rong Zhou on the connected
components of affine Deligne–Lusztig varieties with very special level proved in the Appendix. As a
corollary to our arguments, we obtain irreducibility results for Ekedahl–Oort strata.
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1. Introduction and statement of results

1.1. Introduction. In [32], Langlands outlines a three-part approach to prove that the Hasse–Weil
zeta functions of Shimura varieties are related to L-functions of automorphic forms. The second part is
about describing the mod p points of suitable integral models of Shimura varieties, which is the central
topic of this article.

A conjectural description of the mod p points of integral models of Shimura varieties was first
given by Langlands in [31] and was later refined by Langlands–Rapoport and Rapoport [33, 47, 49].
Together with the test function conjecture of Haines–Kottwitz [12], which was recently proved by
Haines–Richarz [13], this conjecture is the main geometrical input to the Langlands–Kottwitz method
for Shimura varieties of parahoric level. To explain these conjectures, we first need to introduce some
notation.

Let (G,X) be a Shimura datum of Hodge type, let p be a prime number and let Up ⊂ G(Qp) be a
parahoric subgroup. For sufficiently small compact open subgroups Up ⊂ G(Apf ), there is a Shimura
variety ShU (G,X) of level U = UpUp, which is a smooth quasi-projective variety defined over the
reflex field E. For a prime v|p of E, there should be a canonical integral model SU (G,X) over OE,(v).

When Up is hyperspecial, canonical integral models should be smooth and are unique if they satisfy
a certain extension property (cf. [38]). Recent work [42,43] of Pappas and Pappas–Rapoport defines a
notion of canonical integral models when Up is an arbitrary parahoric and proves that they are unique
if they exist.

Then there should be a bijection (see [33, Section 5] and [47, Conjecture 9.2])

lim←−
Up

SUpUp(G,X)(Fp) ≃
∐
ϕ

S(ϕ),(1.1.1)

where

S(ϕ) = Iϕ(Q)\Xp(ϕ)×Xp(ϕ).

Let us elaborate: The sets S(ϕ) are supposed to correspond to points in a single isogeny class, with
Xp(ϕ) parametrising p-power isogenies, Xp(ϕ) parametrising prime-to-p isogenies and Iϕ(Q) the group
of self quasi-isogenies. The set Xp(ϕ) is a G(Apf )-torsor and Xp(ϕ) is a subset of G(Qur

p )/G(Zur
p ), where

G/Zp is the parahoric group scheme with G(Zp) = Up. In fact, the set Xp(ϕ) is the set of Fp-points of
an affine Deligne–Lusztig variety, see Section 2.4.2.

In the unramified PEL case, (1.1.1) corresponds to Rapoport–Zink uniformisation of isogeny classes
(see [46, Section 6]), with Xp(ϕ) corresponding to the set of Fp-points of a Rapoport–Zink space. This
is why we will often refer to (1.1.1) as uniformisation of isogeny classes. Uniformisation of isogeny
classes for Shimura varieties of Hodge type is often assumed in recent work in the area, cf. [14,21,43].

We also expect that (1.1.1) is compatible with the action of G(Apf ) on both sides, and that the
action of Frobenius on the left-hand side should correspond to the action of a certain operator Φ on
the right-hand side. If GQp is quasi-split, then we moreover expect that each isogeny class contains
the reduction of a special point, see [28, Conjecture 1].
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1.2. Main results. Let (G,X) be a Shimura datum of Hodge type and let p > 2 be a prime. We
will assume throughout this introduction that: The group GQp is quasi-split and splits over a tamely
ramified extension, the prime p does not divide the order of π1(Gder) and π1(G)Ip is torsion-free1. Here
Ip ⊂ Gal(Qp/Qp) is the inertia group and π1(G) is the algebraic fundamental group of G.

Let Up ⊂ G(Qp) be a parahoric subgroup, let Up ⊂ G(Apf ) be a sufficiently small compact open
subgroup and consider the Shimura variety ShU (G,X) of level U = UpUp which is an algebraic variety
over the reflex field E. By [25, Theorem 0.1], this Shimura variety has an extension to a flat normal
scheme SU (G,X) over OE,(v), where v|p is a prime of the reflex field E. Under our assumptions, these
integral models are canonical in the sense of [42, Definition 7.1.3], see [42, Theorem 1.4].

Theorem 1. Let (G,X) be a Shimura variety of Hodge type as above. Then each isogeny class of
SU (G,X)(Fp) contains a point x which is the reduction of a special point on ShU (G,X).

This confirms [28, Conjecture 1]. Theorem 1 for very special parahoric subgroups Up is part 2 of
Theorem A.4.5 of the appendix by Rong Zhou.

Theorem 1 was proved by Kisin when Up is a hyperspecial subgroup, see [27], and proved by Zhou
when GQp is residually split, see [55]. We remind the reader that split implies residually split implies
quasi-split, and that residually split and unramified implies split. As in [27, 55], such a lifting result
is deduced from uniformisation of isogeny classes, which is our second main result. Part 1 of the next
theorem is part 1 of Theorem A.4.5 of the appendix.

Theorem 2. Let (G,X) be as above and let Up denote a parahoric subgroup of G(Qp).
(1) If Up is very special, then each isogeny class of SU (G,X)(Fp) has the form

Iϕ(Q)\Xp(ϕ)×Xp(ϕ)/Up.

(2) If either GQp splits over an unramified extension or if ShU (G,X) is proper, then the same
conclusion holds for arbitrary parahoric subgroups Up.

As a consequence of part 2 of Theorem 2, we verify that the He–Rapoport axioms of [16] hold for
the Kisin–Pappas integral models. All but one of the axioms (Axiom 4(c)) were proved in earlier work
of Zhou, see [55].

Theorem 3. Let (G,X) be a Shimura datum of Hodge type as above. If either GQp splits over an
unramified extension or if ShU (G,X) is proper, then the He–Rapoport axioms of [16, Section 3] hold
for the Kisin–Pappas integral models.

Combining our proof of part 2 of Theorem 2 with the ℓ-adic monodromy theorem of [23], we obtain
an irreducibility result for the Ekedahl–Kottwitz–Oort–Rapoport (EKOR) strata defined by Shen–Yu–
Zhang in [50]. We assume for simplicity that Gad is simple over Q, see Theorem 4.5.2 for a more
general statement.

Theorem 4. Let (G,X) be as above, and let Up denote a very special parahoric. Let SU,Fp
{w} be

an EKOR stratum that is not contained in the smallest Newton stratum. If either GQp splits over an
unramified extension or if ShU (G,X) is proper, then the natural map

SU,Fp
{w} → SU,Fp

(G,X)

induces a bijection on sets of connected components.

1For Shimura data of abelian type that are not of type DH in the sense of [37, Appendix B], one can always find an
auxiliary Shimura datum of Hodge type where the last two conditions are satisfied, see [25, Lemma 4.6.22].
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In particular, this proves an irreducibility result for Ekedahl–Oort (EO) strata, which are the EKOR
strata at hyperspecial level. Theorem 4 was proved by Ekedahl and van der Geer [8] in the Siegel case.
Theorem 4 is used in [24] to prove irreducibility results for Igusa varieties.

1.3. Overview of the proof. Both [27] and [55] employ roughly the same strategy, which we will
now briefly sketch: The integral models SU (G,X) of Shimura varieties of Hodge type come equipped,
by construction, with finite maps SU (G,X) → SK′(GSp, S±) to Siegel modular varieties. Given a
point x ∈ SU (G,X)(Fp), classical Dieudonné theory produces a map

Xp(ϕ)→ SU ′(GSp, S±)(Fp),

and the main difficulty is to show that it factors through SU (G,X). A deformation theoretic argument
shows that it suffices to prove this factorisation for one point on each connected component of Xp(ϕ),
and therefore we need to understand these connected components. In the hyperspecial case, this is
done in [6], and in the parahoric case this is done in [19], under the assumption that GQp is residually
split. The main obstruction to extend the methods of [55] beyond the residually split case, is that we
do not understand connected components of affine Deligne–Lusztig varieties of parahoric level for more
general groups.2

1.3.1. In Appendix A, Rong Zhou studies connected components of affine Deligne–Lusztig varieties
for quasi-split groups and very special parahoric subgroups, generalising results of [6] and [39] in the
case of unramified groups. In particular, part 1 of Theorem 2 and Theorem 1 in the case of a very
special parahoric are proved there, see Theorem A.4.5.

1.3.2. In Section 4 we prove uniformisation for a general parahoric subgroup by reducing to the case of
a very special parahoric subgroup. This reduction argument happens on the level of Shimura varieties;
we will give a brief overview of our reduction argument below.

Let Up denote a very special parahoric subgroup and let U ′
p denote an Iwahori subgroup contained

in Up, then by [55, Section 7] there is a proper morphism of integral models SU ′(G,X)→ SU (G,X)
and we let ShU ′

p
→ ShUp be the induced morphism on the perfections of their special fibers. There is

a commutative diagram

(1.3.1)

ShG,U ′ ShtG,µ,U ′
p

ShG,U ShtG,µ,Up ,

where ShtG,µ,Up is the stack of parahoric Up-shtukas of type µ introduced by Xiao-Zhu [54] (cf. Section
2.2.7, 2.2.12 and [50, Section 4]), with µ the inverse of the Hodge cocharacter induced by the Shimura
datum (G,X).

The horizontal morphisms in (1.3.1) are the Hodge type analogues of the morphism from the moduli
space of abelian varieties to the moduli stack of quasi-polarised Dieudonné modules. If G = GSp, then
this diagram is Cartesian. In general, it follows from ‘local uniformisation’ of ShtG,µ,U ′ , that isogeny
classes in ShG,U ′

p
have the correct form if (1.3.1) is Cartesian, see Theorem 3.3.1. One of the main

technical results of this paper, Theorem 4.4.1, is that the diagram is Cartesian under the assumptions
of part 2 of Theorem 2, which proves a conjecture of He and Rapoport that we learned from Rong
Zhou.

2After a first version of our paper appeared, we learned of work of Nie [40] which solves this problem for unramified
groups. Recently there has been work of Gleason–Lim–Xu [10] and Gleason–Lourenço [11] which completely settles the
problem of understanding connected components of affine Deligne–Lusztig varieties.
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1.3.3. We prove in Section 2, see Proposition 2.2.15, that the morphism ShtG,µ,U ′
p
→ ShtG,µ,Up is

representable by perfectly proper algebraic spaces, and we let ShG,U ′,⋆ be the fiber product of (1.3.1).
There is a closed immersion ι : ShG,U ′ → ShG,U ′,⋆ given by the universal property of the fiber product,
see Proposition 4.1.4. To prove the main theorem, it suffices to show that ι is an isomorphism.

We first show that ShG,U ′,⋆ is equidimensional of the same dimension as ShG,U ′ and that it has a
Kottwitz–Rapoport (KR) stratification with the expected properties. To do this, we build a local model
diagram for ShG,U ′,⋆ in the world of perfect algebraic geometry, see Proposition 4.2.1. This requires
us to produce a version of the diagram in (1.3.1) for stacks of restricted shtukas, and to analyse the
forgetful maps for these stacks. Another key ingredient is the fact, proved3 by Xiao–Zhu, [54], and
Shen–Yu–Zhang, [50], that the morphisms from ShG,U to these stacks of restricted shtukas are perfectly
smooth.

The next step is to study the irreducible components of ShG,U ′,⋆ and ShG,U ′ . In Section 4.3, see
Proposition 4.3.16, we will show that each irreducible component of ShG,U ′,⋆ can be moved into ShG,U ′

using prime-to-p Hecke operators. Since ShG,U ′,⋆ is stable under the prime-to-p Hecke operators, we
may conclude from this that ι : ShG,U ′ → ShG,U ′,⋆ is an isomorphism.

To prove Proposition 4.3.16, we use the KR stratification of both ShG,U ′ and ShG,U ′,⋆ to reduce
to analysing irreducible components in each KR stratum separately. Our proof then proceeds by
degenerating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport–Zink
uniformisation of the basic locus.

Our assumption that either GQp splits over an unramified extension or that ShU (G,X) is proper
will be used to prove that every irreducible component of the closure of a KR stratum in ShG,U ′,⋆

intersects the zero-dimensional KR stratum, see Lemma 4.3.4 and Proposition 4.3.5. In the proper
case, it is enough to prove that KR strata in ShG,U ′,⋆ are quasi-affine. In the unramified case, we use
results of [53] and [1] on the Ekedahl–Oort stratification and results of [17] on the geometry of forgetful
maps.

1.4. Outline of the paper. In Section 2 we will study forgetful maps for moduli stacks of local
shtukas and moduli stacks of restricted local shtukas. We will also study Newton strata in moduli
spaces of shtukas and describe them explicitly in terms of affine Deligne–Lusztig varieties. In Section
3 we study uniformisation of isogeny classes in Shimura varieties of Hodge type at parahoric level. We
will deduce the existence of CM lifts at arbitrary parahoric level from the results of Appendix A, and
we will show that uniformisation for general parahoric subgroups is equivalent to a certain diagram
being Cartesian. In Section 4, we prove that this diagram is Cartesian.

2. Local shtukas

We start this section by recalling some perfect algebraic geometry from [54, Appendix A] and defining
a notion of weakly perfectly smooth morphisms of perfect algebraic stacks.

In the rest of the section we will recall the moduli stacks of local shtukas with parahoric level of
[50] and study the forgetful maps between them. We start by proving Proposition 2.2.15, which states
that this forgetful map is representable and proper. We then study forgetful maps of restricted local
shtukas and prove Proposition 2.3.4, which is an important technical result that will be used in Section
3 to prove equidimensionality of ShG,U ′

p,⋆.
In the second half, we discuss σ-conjugacy classes and the Newton stratification on moduli stacks

of local shtukas. We end by discussing affine Deligne–Lusztig varieties and use them in Lemma 2.4.5
to describe Newton strata in moduli stacks of local shtukas. This latter result is used in Section 3 to
‘lift’ uniformisation along forgetful maps.

3See Remark 3.1.8.
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2.1. Some perfect algebraic geometry. We will use the language of perfect algebraic geometry
from [57, Appendix A]. Let k = Fp and denote by Affperf

k the category of perfect k-algebras, equipped
with the étale topology. Perfect k-schemes define fpqc sheaves on Affperf

k , and for X a scheme over k
we will write Xperf for the perfection of X (the inverse limit over the relative k-Frobenius of X).

Perfect algebraic spaces are defined to be sheaves on Affperf
k that are étale locally isomorphic to

perfect schemes. See [54, Definition A.1.7] for the definition of a pfp (perfectly of finite presentation)
algebraic space. A perfect algebraic space is pfp if and only if it is isomorphic to the perfection of
an algebraic space of finite presentation over k, see [54, Proposition A.1.8]. We will often write pfp
algebraic space to mean pfp perfect algebraic space.

Lemma 2.1.1. If X is a pfp algebraic space. Then for every directed set I and any inverse system
(Ti, fi,j) of perfect k-schemes with all fi,j affine and all Ti qcqs, the natural map

Hom(lim←−
i

Ti, X)→ lim−→
i

Hom(Ti, X)

is a bijection.

Proof. Choose a deperfection X → Y of X using [54, Proposition A.1.8]. We may then apply [51,
Proposition 01ZC] to deduce that the natural map

Hom(lim←−
i

Ti, Y )→ lim−→
i

Hom(Ti, Y ),(2.1.1)

is an isomorphism. We conclude by noting that (2.1.1) can be identified

Hom(lim←−
i

Ti, X)→ lim−→
i

Hom(Ti, X)

since the Ti are perfect and since T is perfect. □

2.1.2. We will use the notion of perfectly proper morphism of perfect algebraic spaces, see [57, Defi-
nition A.18]. A morphism f : X → Y of pfp algebraic spaces over k is perfectly proper if and only if it
is isomorphic to the perfection of a proper morphism of algebraic spaces of finite presentation over k,
see [57, Lemma A.19]. We will often write perfectly proper algebraic space to mean a perfect algebraic
space whose structure map to Spec k is perfectly proper.

Recall that a morphism f : X → Y of perfect algebraic spaces is called perfectly smooth of relative
dimension d at x, where x ∈ X, if there is an étale neighbourhood U → X of x and V → Y of f(x)
such that U → X → Y factors through a map h : U → V and such that h factors as h = pr ◦h′ where

h′ : U → (Ad)perf × V

is étale and where pr : (Ad)perf × V → V is the projection. It is called perfectly smooth of relative
dimension d if it is perfectly smooth of relative dimension d at all points x ∈ X. This property
is preserved under base change, and the composition of a perfectly smooth morphism f of relative
dimension d with a perfectly smooth morphism g of relative dimension d′ is perfectly smooth of relative
dimension d + d′. A morphism f : X → Y is called perfectly smooth if it is perfectly smooth of some
dimension at every x ∈ X. This property is also preserved under base change and composition.

Example 2.1.3. If f : X → Y is a morphism of schemes over k that is smooth of relative dimension d
at x ∈ X, then fperf : Xperf → Y perf is perfectly smooth of relative dimension d at x by [51, Lemma
054L].

Lemma 2.1.4. Let f : X → Y be a perfectly smooth morphism of perfect algebraic spaces. If X is
connected, then f is perfectly smooth of relative dimension d for some integer d.
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Proof. Let x ∈ X. Then f is perfectly smooth of relative dimension d at x for some integer d, and it
follows from the definition that the same is true for all u in an open neighborhood W of x. Now let
x′ ∈ X. Then f is perfectly smooth of relative dimension d′ at x′ for some integer d′, and it suffices to
show that d = d′. Note that f is perfectly smooth of relative dimension d′ at u′ for all u′ in an open
neighborhood W ′ of x′.

Since X is connected, we know W ′ ∩W is non-empty and thus there is a point u′′ ∈ W ′ ∩W such
that f is perfectly smooth of relative dimension d and d′ at u′′. It follows from the definition that there
are open neighborhoods U and U ′ of u′ such f−1(f(u)) ∩U is étale locally isomorphic to (Ad)perf and
such that f−1(f(u))∩U ′ is étale locally isomorphic to (Ad′)perf . For dimension reasons, we must then
have d = d′. □

Definition 2.1.5. A morphism f : Y → Z of perfect algebraic spaces is called weakly perfectly smooth
of relative dimension d at y for y ∈ Y if: There exists an open neighborhood U of y and a surjective
map g : X → U that is perfectly smooth of relative dimension e, where X is a perfect algebraic space,
such that f ◦ g : X → Z is perfectly smooth of relative dimension e+ d. A morphism is called weakly
perfectly smooth of relative dimension d if it is weakly perfectly smooth of relative dimension d at y
for all y ∈ Y .

This property is preserved under base change, and the composition of a weakly perfectly smooth
morphism of relative dimension d with a weakly perfectly smooth morphism of relative dimension d′

is a weakly perfectly smooth morphism of relative dimension d+ d′. The following lemmas show that
the integer d is well-defined.

Lemma 2.1.6. Let f : X → Y be an open morphism of equidimensional pfp algebraic spaces such that
the fibers of f are equidimensional of dimension d. Then dimX + d = DimY .

Proof. This follows from the corresponding fact for open morphisms of finite type schemes over k, by
choosing a deperfection of f , using [57, Proposition A.17], and applying [51, Lemma 0AFE] and its
proof. □

Lemma 2.1.7. If f : Y → Z is weakly perfectly smooth of relative dimension d at y ∈ Y , then there
is an open neighborhood U of y such that U ∩ f−1(f(y)) is equidimensional of dimension d.

Proof. The statement is Zariski local on the source, so after replacing Y by an open neighborhood of a
point in Y there is a surjective map g : X → Y that is perfectly smooth of relative dimension e, such
that f ◦ g : X → Z is perfectly smooth of relative dimension e+ d.

Then the scheme (f ◦ g)−1(z) is equidimensional of dimension e+d since f ◦ g is perfectly smooth of
relative dimension e+d. Similarly the fibers of the fpqc cover (f◦g)−1(z)→ f−1(z) are equidimensional
of dimension e. It now follows from Lemma 2.1.6 that f−1(z) is equidimensional of dimension d. □

A morphism f : Y → Z is called weakly perfectly smooth if there is a perfectly smooth surjection
g : X → Y such that f ◦ g is perfectly smooth. The following lemma relates this to Definition 2.1.5.

Lemma 2.1.8. A morphism f : Y → Z is weakly perfectly smooth if and only if for all y ∈ Y the
morphism f is weakly perfectly smooth of relative dimension dy at y, for some positive integer dy which
is allowed to depend on y.

Proof. If f is weakly perfectly smooth, then there is a perfectly smooth surjection g : X → Y such that
f ◦ g is perfectly smooth. For y ∈ Y there is a connected component V of X whose image Uy contains
y, and such that gV := g

∣∣
V

and f ◦ gV are perfectly smooth. Since V is connected, the morphisms
gV and f ◦ gV are perfectly smooth of relative dimensions e and e + d, for some e and d, see Lemma
2.1.4. Since perfectly smooth morphisms are open, we see that Uy is open and so f is weakly perfectly
smooth of relative dimension d at y.
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Conversely, if for all y ∈ Y the morphism f is weakly perfectly smooth of relative dimension dy at
y, then for each y ∈ Y there is an open subset Uy ⊂ Y containing y and a perfectly smooth surjection
gy : Xy → Uy such that f ◦ gy is perfectly smooth. Then the natural map

g :
∐
y

Xy → Y

is perfectly smooth and surjective and similarly f ◦ g is also perfectly smooth. It follows that f is
weakly perfectly smooth. □

Lemma 2.1.9. Let f : Y → Z be a weakly perfectly smooth morphism of perfect algebraic spaces. If
Y is connected, then f is weakly perfectly smooth of relative dimension d for some d.

Proof. It follows from Lemma 2.1.8 that for y ∈ Y there exists a positive integer dy such that f is
weakly perfectly smooth of relative dimension dy at y. Moreover, the same is true for all u in an open
neighborhood Uy of y.

Thus if y, y′ ∈ Y with positive integers dy, d′y and open neighborhoods Uy, Uy′ , then Uy ∩ Uy′ is
non-empty because Y is connected. Therefore there is a point u ∈ Uy ∩ Uy′ such that f is weakly
perfectly smooth of relative dimensions d and d′ at u. By Lemma 2.1.7, it follows that d = d′ and we
conclude that f is weakly perfectly smooth of relative dimension d. □

Recall that a scheme is called locally integral if its local rings are integral.

Lemma 2.1.10. Let f : Y → Z be a weakly perfectly smooth morphism of perfect schemes. If Z is
locally integral, then Y is locally integral.

Proof. Let y ∈ Y . Then by Lemma 2.1.8 the morphism f is weakly perfectly smooth of relative
dimension d at Y . Therefore there is an open subset Uy ⊂ Y containing y and a surjective map
g : X → U that is perfectly smooth of relative dimension e, such that f ◦ g : X → Z is perfectly
smooth of relative dimension e+ d. To show that the local ring of Y at y is integral, it suffices by fpqc
descent to do this for the local rings of X.

Let x ∈ X and choose an étale neighbourhood U → X of x and V → Z of (f ◦ g)(x) such that
U → X → Z factors through a map h : U → V and such that h factors as h = pr ◦h′ where

h′ : U → (Ad+e)perf × V

is étale and where pr : (Ad+e)perf × V → V is the projection.
The local rings of (Ad+e)perf × V are localisations of perfected polynomial rings over the local rings

of V , and thus integral. Therefore the local rings of U are integral, and by étale descent the local ring
of X at x is integral. □

2.1.11. We follow [51, Section 04XB] to define certain properties of morphisms of prestacks on Affperf
k

that are representable by morphisms of perfect algebraic spaces. For example, a morphism f : X → Y
of prestacks that is representable by perfect algebraic spaces is called perfectly smooth if it is rep-
resentable by perfectly smooth morphisms of perfect algebraic spaces. In other words, if for every
morphism T → Y , where T is a perfect algebraic space, the base change XT → T is a perfectly smooth
morphism of perfect algebraic spaces.

A pfp algebraic stack is a stack Y on Affperf
k for the fpqc topology with diagonal representable by

pfp algebraic spaces that admits a perfectly smooth surjective4 map f : U → Y from a pfp algebraic
space. The main example that we will be interested in is the quotient stack5 [X/G] of a pfp algebraic
space X by a pfp group scheme G. This is a pfp algebraic stack because X → [X/G] is perfectly

4This means per definition that f is representable by perfectly smooth surjections of perfect algebraic spaces.
5We always take quotient stacks in the étale topology unless otherwise specified.
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smooth, see Example 2.1.13. We will also need a notion of weak perfect smoothness for morphisms of
pfp algebraic stacks that are not necessarily representable.

Definition 2.1.12. A morphism f : Y → Z of pfp algebraic stacks is called weakly perfectly smooth,
if there is a perfectly smooth surjective morphism g : X → Y from a pfp algebraic space X such that
the composition f ◦ g is perfectly smooth.

As before, this property is preserved under base change and composition. If f : Y → Z is repre-
sentable, then this is (per definition) equivalent to asking that f : Y → Z is representable by weakly
perfectly smooth morphisms of perfect algebraic spaces.

Example 2.1.13. Let G be a pfp group scheme over Spec k. Then G→ Spec k arises as the perfection
of a smooth group scheme over k by [57, Lemma A.26], and therefore G→ Spec k is perfectly smooth
by Example 2.1.3. This means that G-torsors for the étale topology are perfectly smooth morphisms.
In particular, the natural map Spec k → [Spec k/G] is perfectly smooth and thus [Spec k/G]→ Spec k
is weakly perfectly smooth.

Example 2.1.14. Recall that an étale G-gerbe over a pfp algebraic stack Y is a morphism f : X → Y of
pfp algebraic stacks that is étale locally (on Y ) of the form Y × [Spec k/G]→ Y . Since [Spec k/G]→
Spec k is weakly perfectly smooth, it follows that f : X → Y is weakly perfectly smooth because this
can be checked étale locally on Y .

Remark 2.1.15. In [54, Definition A.1.13], a morphism of pfp algebraic stacks satisfying the property in
Definition 2.1.12 is called a perfectly smooth morphism. However, it is not clear to us that a morphism
f : Y → Z of pfp algebraic spaces satisfying the property in Definition 2.1.12 is perfectly smooth (in
the sense defined in the beginning of Section 2.1), rather than just weakly perfectly smooth.

Lemma 2.1.16. Suppose that X is a pfp algebraic space that is equidimensional of dimension d with
an action of a pfp group scheme G, and let Y be a pfp algebraic space together with a weakly perfectly
smooth morphism

f : Y → [X/G] .

Then Y is equidimensional if and only if f is weakly perfectly smooth of relative dimension n, where
DimY = d+ n− dimG.

Proof. Consider the fiber product diagram

Ỹ X

Y [X/G] .

f̃

f

The morphism Ỹ → Y is a G-torsor and hence perfectly smooth of relative dimension equal to dimG
by Example 2.1.13. If f is weakly perfectly smooth of relative dimension n, then f̃ is weakly perfectly
smooth of relative dimension n because it is a basechange of f . It follows from Lemma 2.1.7 and Lemma
2.1.6 that Dim Ỹ = d+ n. Similarly, it follows that the dimension of Y is equal to d+ n− dimG.

If Y is equidimensional of dimension DimY , then Ỹ is equidimensional of dimension DimY +DimG
by Lemma 2.1.6 and Lemma 2.1.7. Since both X and Ỹ are equidimensional and pfp, we see that the
dimension of the fibers of f̃ must be equal to DimY + DimG − d by Lemma 2.1.6. Therefore f̃ is
weakly perfectly smooth of relative dimension n = DimY +DimG−d, and it readily follows from this
that the same holds for f . □

2.2. Affine flag varieties, moduli stacks of shtukas and forgetful maps.
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2.2.1. Let Q̆p be the completion of a maximal unramified extension of Qp, which is equipped with an
action of the p-Frobenius σ. Let G be a connected reductive group over Qp and let B(G,Qp) (resp.
B(G, Q̆p)) denote the (extended) Bruhat–Tits building of G over Qp (resp. Q̆p). For a non-empty
bounded subset Ξ ⊂ B(G,Qp) which is contained in an apartment, we let G(Qp)Ξ (resp. G(Q̆p)Ξ)
denote the subgroup of G(Qp) (resp. G(Q̆p)) which fixes Ξ pointwise. By the main result of [5], there
exists a smooth affine group scheme G̃Ξ over Zp with generic fiber G which is uniquely characterised by
the property G̃Ξ(Z̆p) = G(Q̆p)Ξ. We call such a group scheme the Bruhat–Tits stabiliser group scheme
associated to Ξ. If Ξ = {x} is a point, we write G(Qp)x (resp. G̃x) for G(Qp){x} (resp. G̃{x}).

For Ξ ⊂ B(G,Qp) as above, we let Gx denote the ‘connected stabiliser’ (cf. [5, §4]). We are mainly
interested in the case that Ξ is a point or an open facet f. In this case Gf (resp. Gx) is the parahoric
group scheme associated to f (resp. x).

We may also consider the corresponding objects over Q̆p and we use the same notation in this case.
When it is understood which point of B(G,Qp) or B(G, Q̆p) we are referring to, we simply write G̃
and G for the corresponding group schemes.

An important case that we need for applications is when G̃x = Gx, i.e. the parahoric is equal to the
Bruhat–Tits stabiliser. When this happens, we necessarily have G̃f = G̃x, where f is the facet containing
x, and x ∈ f is a point ‘in general position’. A parahoric group scheme G over Zp (resp. Z̆p) is called
a connected parahoric if there exists x ∈ B(G,Qp) (resp. x ∈ B(G, Q̆p)) such that G = Gx = G̃x.

Let π1(G) be the algebraic fundamental group of GQp , equipped with its action of Gal(Qp/Qp) (cf.
the introduction of [3]), and let I ⊂ Gal(Qp/Qp) be the inertia group.

Lemma 2.2.2. If π(G)I is torsion free, then G̃x = Gx for all x. In other words, all parahoric group
schemes are connected parahoric group schemes.

Proof. This follows from [41, Remark 11 of the appendix]. □

2.2.3. Let S ⊂ GQ̆p
be a maximal Q̆p-split torus defined over Qp and let T be its centraliser; it is a

maximal torus of G because GQ̆p
is quasi-split by a theorem of Steinberg. Choose a σ-invariant alcove

a in the apartment of B(G, Q̆p) associated to S. Let N be the normaliser of T in GQ̆p
. We define the

relative Weyl group as

W0 := N(Q̆p)/T (Q̆p)

and the Iwahori–Weyl group (or extended affine Weyl group) as

W̃ := N(Q̆p)/T (Z̆p),

where T over Z̆p is the connected Néron model of T . There is a short exact sequence

0→ X∗(T )I → W̃ →W0 → 0,

where I is the inertia group and X∗(T )I denotes the inertia coinvariants of the cocharacter lattice
X∗(T ) of T . The map X∗(T )I → W̃ is denoted on elements by λ 7→ tλ. Let S ⊂ W̃ denote the set of
simple reflections in the walls of a and let W̃a be the subgroup of W̃ generated by S, which we will call
the affine Weyl group.

Parahoric subgroups K of G(Q̆p) that contain the Iwahori subgroup corresponding to a are called
standard parahoric subgroups; they correspond to subsets K ⊂ S such that the subgroup WK generated
by K is finite; we will call such subsets types. This identification is Frobenius equivariant in the sense
that σ(K) corresponds to σ(K). In particular, a subset K ⊂ S corresponds to a parahoric subgroup
of G if and only if σ(K) = K; note that our fixed Iwahori subgroup corresponds to ∅ ⊂ S. There
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are parahoric group schemes GK over Z̆p associated to types K as above, and we have identifications
σ∗GK ≃ Gσ(K). In particular, if K is stable under σ, then GK is defined over Zp. The maximal reductive
quotient (GK)red of the special fiber GK of GK is a split reductive group over the residue field k of Q̆p,
and the image of G∅ in (GK)red is a Borel subgroup. The set of simple roots of (GK)red with respect to
this Borel subgroup can be identified with K.

Lemma 2.2.4. Let J ⊂ K ⊂ S and suppose that GK is a connected parahoric, then GJ is a connected
parahoric.

Proof. Let xK , xJ ∈ B(G, Q̆p) such that GK = GxK and GJ = Gxj . We assume that xJ and xK are in
general position in their respective facets. Then we have GxK = G̃xK since G is a connected parahoric,
and we have G̃xJ = G̃fJ , where fJ is the facet corresponding to J .

Since xK lies in the closure of fJ , it follows that G̃xJ (Z̆p) ⊂ G̃xK (Z̆p) = GxK (Z̆p). But GxK (Z̆p) is
contained in the kernel of the Kottwitz map κ : G(Q̆p)→ π1(G)I . Therefore, we have G̃xJ (Z̆p) ⊂ ker(κ)

and hence we deduce as in Lemma 2.2.2 that G̃xJ = GxJ . □

There is a split short exact sequence (our choice of a provides a splitting)

0→ W̃a → W̃ → π1(G)I → 0.(2.2.1)

The affine Weyl group W̃a has the structure of a Coxeter group, and we will use this to define a Bruhat
order (denoted by ≤) and a notion of length on W̃ , by splitting (2.2.1) and regarding π1(G)I ⊂ W̃ as
the subset of length zero elements. We will write ℓ(w) for the length of an element of W̃ . Similarly,
we define a partial order ≤ on WK\W̃/WK by taking minimal length representatives of double cosets.

2.2.5. In this section we will recall some definitions from [50, 54, 57] and state some results. Let the
notation be as in Sections 2.2.1 and 2.2.3, so in particular G denotes a connected reductive group over
Qp. Let GK be a parahoric group scheme over Z̆p corresponding to a σ-stable type K ⊂ S. For an
object R of Affperf

k we set

DR = SpecW (R), D∗
R = SpecW (R)[1/p],

where W (R) denotes the ring of p-typical Witt vectors of R. We define group-valued functors on
Affperf

k sending an object R to

LG(R) := G(D∗
R)

L+GK(R) := GK(DR)

LmGK(R) := GK (W (R)/pmW (R)) ,

which we call the loop group, respectively the positive loop group, respectively the m-truncated loop
group. It follows from [57, Section 1.1] that LmGK and L+GK are representable by perfect schemes over
k and that L+GK = lim←−m L

mGK . Moreover, [57, Proposition 1.1] tells us that LG is representable by
an ind-perfect ind-scheme, which means that it is isomorphic to an inductive limit of perfect schemes
along closed immersions. By [57, Lemma 1.2.(i)], the natural map L+GK → LG is a closed immersion.

2.2.6. Let R be a perfect Fp-algebra and let E and F be GK-torsors on DR.6 Recall from [54, Section
3.1.3] that a modification β : E 99K F is an isomorphism of G-torsors

β : E
∣∣
D∗

R
→ F

∣∣
D∗

R
.

6Here we mean torsor in the fpqc topology on DR = SpecW (R) in the usual way.
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It follows from the proof of [57, Lemma 1.3] that E can be trivialised after an étale cover SpecDR′ →
SpecDR coming from an étale cover SpecR′ → SpecR. Therefore we can also think of GK-torsors over
DR as étale L+GK-torsors over SpecR.

We define the (partial) affine flag variety GrK to be the functor sending R to the set of isomorphism
classes of modifications

α : E 99K E0,

where E is a GK-torsor over DR, and where E0 is the trivial GK-torsor over DR. There is a natural
action of

LG = Aut(E0
∣∣
D∗

R
)

on GrK by postcomposing α with an automorphism of the restriction to D∗
R of E0, and the orbit of

the Fp-point of GrK given by the identity modification E0 → E0 induces a map O : LG → GrK . The
map O induces an identification (that we will implicitly use from now on)

GrK(Fp) ≃ G(Q̆p)/GK(Z̆p).

It is a result of [2, 57] that GrK is representable by an ind-projective ind-scheme. We also define the
Hecke stack HkK to be the stack on Affperf

k sending R to the groupoid of modifications β : E 99K F .
The natural map GrK → HkK is an L+GK-torsor for the étale topology, where L+GK acts on GrK via
the closed immersion L+GK ⊂ LG.

2.2.7. Recall from [50, Definition 4.1.3] that a (local) GK-shtuka over a perfect k-algebra R is a
pair (E , β), where E is a GK-torsor over DR and where β is a modification β : σ∗E 99K E . Here
σ : DR → DR denotes the Frobenius morphism induced from the absolute Frobenius on R, and we
consider the restriction of σ∗E to D∗

R as a G-torsor via the isomorphism σ : σ∗G→ G, coming from the
fact that G is defined over Qp. A morphism of shtukas (E , β)→ (E ′, β′) is an isomorphism f : E → E ′
of GK-torsors such that the following diagram commutes

σ∗E E

σ∗E ′ E ′.

β

σ∗f f

β′

We will write ShtG,K(R) for the groupoid of GK-shtukas over R and ShtG,K for the stack on Affperf
k

sending R to ShtG,K(R).

Remark 2.2.8. When GK = GLn,Zp , a GK-shtuka over a perfect ring R is a projective module M of
rank n over W (R) together with an isomorphism

β : σ∗M [1/p]→M [1/p].

If the map β satisfies pM ⊂ β(σ∗M) ⊂ M , then the pair (M,β) is a Dieudonné module. By a result
of Gabber, see [34], there is a p-divisible group over SpecR with Dieudonné module (M,β).

2.2.9. For an inclusion of types J ⊂ K, there is a closed immersion L+GJ ⊂ L+GK , since both are
closed subschemes of LG by [57, Lemma 1.2.(i)]. If J and K are σ-stable, then pushing out torsors
along L+GJ → L+GK induces a forgetful map

ShtG,J → ShtG,K .

In this section we will show that these forgetful maps are representable by perfectly proper algebraic
spaces, which is an analogue of [41, Proposition 8.7].
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Let (GK)red be the maximal reductive quotient of the 1-truncated loop group L1GK = GK and let
HJ be the image of GJ in (GK)red; it is a standard parabolic subgroup of type J ⊂ K (recall that K
can be identified with the set of simple roots of (GK)red with respect to the Borel B that is the image
of G∅ → (GK)red). Recall that for a perfect group scheme H we write BH for the classifying stack
of H; in other words, BH is the groupoid valued functor that sends an object R of Affperf

k to the
groupoid of H torsors (in the étale topology) over SpecR. There is a natural morphism Spec k → BH
corresponding to the trivial H-torsor over Spec k, which induces an isomorphism [Spec k/H]→ BH.

Lemma 2.2.10. The forgetful map BL+GJ → BL+GK is a (GK)red/HJ -bundle for the étale topology,
in particular it is representable by perfectly proper algebraic spaces.

Proof. Let R be a perfect Fp-algebra and let X be an L+GK torsor over SpecR represented by a map
SpecR→ BL+GK . It follows from the definition of quotient stacks that both squares in the following
diagram of stacks are Cartesian

X Spec k

[X/L+GJ ] BL+GJ

SpecR BL+GK .

By [57, Lemma 1.3], there is an étale cover T → SpecR such that XT is isomorphic to the trivial
L+GK torsor over T , hence [X/L+GJ ] is étale locally isomorphic to SpecR× [L+GK/L+GJ ]. Therefore
it suffices to show that [L+GK/L+GJ ] is representable by a perfectly proper scheme. It follows from
the proof of [41, Proposition 8.7], cf. Lemma 2.3.5 below, that

[L+GK/L+GJ ] ≃ [(GK)red/HJ ]

and the latter is representable by a perfectly proper scheme because it is the perfection of a partial
flag variety for (GK)red. □

Corollary 2.2.11. The map ShtG,J → ShtG,K is a (GK)red/HJ -bundle for the étale topology, in
particular it is representable by perfectly proper algebraic spaces.

Proof. This follows because the following diagram is Cartesian

(2.2.2)
ShtG,J ShtG,K

BL+GJ BL+GK .

Indeed, this is a straightforward consequence of the definitions. [A GJ -shtuka is the same thing as a
GK-shtuka (E , β) together with an L+GJ -torsor E ′ and an isomorphism α : E ′ ×L+GJ

L+GK ≃ E .] □

2.2.12. Relative position. It follows from the discussion in [19, Section 3.6] that there is an L+GK-
equivariant stratification

GrK =
⋃

w∈WK\W̃/WK

GrK(w),
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where each GrK(w) is a locally closed subscheme of GrK , such that on Fp-points we recover the
Bruhat–Tits decomposition

GrK(Fp) = G(Q̆p)/GK(Z̆p) =
⋃

w∈WK\W̃/WK

GK(Z̆p)ẇGK(Z̆p)/GK(Z̆p),

see [41, Proposition 8 of the appendix]. We deduce from this that we get a decomposition[
L+GK\GrK

]
=: HkK =

⋃
w∈WK\W̃/WK

HkK(w),

where HkK(w) = [L+GK\GrK(w)]. It follows moreover from [19, Section 3.6] that the closure of
GrK(w) is equal to

GrK(≤ w) :=
⋃
w′≤w

GrK(w′).

Furthermore, when K = ∅, the dimension of GrK(w) is equal to the length ℓ(w) of w.

2.2.13. Let {µ} be a G(Qp)-conjugacy class of cocharacters of GQp
. Recall that we fixed a maximal

torus T of G in Section 2.2.3. Choose a Borel B of GQ̆p
containing TQ̆p

and let µ be the image in
X∗(T )I of a B-dominant representative of {µ}. The set of {µ}-admissible elements is defined as

Adm({µ}) = {w ∈ W̃ : w ≤ tx(µ) for some x ∈W0}.

There is a unique element τ = τµ ∈ Adm({µ}) of length zero and in fact Adm({µ}) ⊂ W̃aτ . For K a
σ-stable type, we define Adm({µ})K as the image of Adm({µ}) under W̃ → WK\W̃/WK . We write
KAdm({µ}) for Adm({µ}) ∩KW̃ , whereKW̃ ⊂ W̃ denotes the subset of elements that are of minimal
length in their left WK-coset.

If {µ} is minuscule and K is a σ-stable type, then we define the perfect local model attached to {µ}
and K to be the perfect projective scheme

Mloc
K,{µ} :=

⋃
w∈Adm({µ})K

GrK(w).

The scheme Mloc
K,{µ} is equidimensional of dimension d = ⟨2ρ, µ⟩ = ℓ(tx(µ)), where ρ is the half sum

of the positive roots (with respect to B). The locally closed subschemes GrK(w) ⊂ Mloc
K,{µ} are called

Kottwitz–Rapoport (KR) strata.

2.2.14. Let {µ} be a conjugacy class of cocharacters of GQp
as above, and let Adm({µ})K be the

µ-admissible set. Recall that the stack HkK is the moduli stack of modifications E 99K F of L+GK-
torsors. We define a map Rel : ShtG,K → HkK sending (E , β) to β : σ∗E 99K E . For w ∈WK\W̃/WK ,
we have the locally closed substack HkK(w) ⊂ HkK from Section 2.2.12, and its pullback along Rel
defines a locally closed substack

ShtG,K(w) ⊂ ShtG,K .

Following [50, Definition 4.1.3], we define the stack of shtukas of level GK and type µ to be

ShtG,K,{µ} :=
⋃

w∈Adm({µ})K

ShtG,K(w);
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it is a closed substack of ShtG,K by the discussion in Section 2.2.12. If J ⊂ K is another σ-stable type,
then the following diagram commutes by definition of Adm({µ})J and Adm({µ})K (but it is generally
not Cartesian)

ShtG,J,{µ} ShtG,J

ShtG,K,{µ} ShtG,K .

Proposition 2.2.15. The forgetful morphism ShtG,J,{µ} → ShtG,K,{µ} is representable by perfectly
proper algebraic spaces.

Proof. We know that ShtG,J,{µ} → ShtG,J is representable by perfectly proper algebraic spaces because
it is a closed immersion, and the map ShtG,J → ShtG,K is representable by perfectly proper algebraic
spaces by Corollary 2.2.11. The composition is thus representable by perfectly proper algebraic spaces
and factors over ShtG,K,{µ}, which proves the result. □

2.3. Restricted local shtukas and forgetful maps. We will recall some results from [50, Section
4.2]. Fix a geometric conjugacy class of minuscule cocharacters {µ} of GQp

for the rest of this section,
and let Adm({µ})K be the µ-admissible set. Recall from [50, Lemma 4.1.4] that ShtG,K has the
following quotient description: Let σ : L+GK → L+GK be the relative Frobenius morphism and let
L+GK act on LG via h · g = (h−1gσ(h)), we denote this action by Adσ. With this notation, there is
an isomorphism

ShtG,K ≃
[

LG

Adσ L+GK

]
.

The map Λ : LG→ ShtG,K constructed this way corresponds to a shtuka over LG: It is the modification
β : E0LG ≃ σ∗E0LG 99K E0LG given by the tautological element in LG. Moreover the map LG → ShtG,K
is precisely the universal L+GK-torsor over ShtG,K .

Consider the following commutative diagram

LG GrK

ShtG,K HkK .

Λ

O

Rel

There is a closed subscheme Mloc,∞
K,{µ} ⊂ LG defined to be the inverse image of Mloc

K,{µ} ⊂ GrK under
LG→ GrK . The discussion in the previous paragraph, along with the commutative diagram, tells us
that there is a natural identification

ShtG,K,{µ} ≃

 Mloc,∞
K,{µ}

Adσ L+GK

 .
For J ⊂ K a σ-stable subset, there is a closed immersion Mloc,∞

J,{µ} ⊂ Mloc,∞
K,{µ} which identifies

Mloc,∞
K,{µ}

L+GJ
⊂ GrJ

with the preimage of Mloc
K,{µ} under GrJ → GrK .
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2.3.1. Let βK : L+GK → (GK)red be the natural map, where (GK)red is the maximal reductive quotient
of GK = L1GK . Define Mloc,1−red

K,{µ} := kerβK\Mloc,∞
K,{µ}; it is a (GK)red-torsor over Mloc

K,{µ}. We then define

Sht
(∞,1)
G,K,{µ} :=

 Mloc,1−red
K,{µ}

Adσ L+GK

 .
It follows from Lemma 2.1.1 that the twisted conjugation action of L+GK on Mloc,1−red

K,{µ} factors through
the action of LmGK for m ≫ 0, and for such m we define the stack of (m)-restricted shtukas of type
{µ} by

Sht
(m,1)
G,K,{µ} :=

 Mloc,1−red
K,{µ}

Adσ LmGK

 .
Note that there are natural morphisms

ShtG,K,{µ} =

 Mloc,∞
K,{µ}

Adσ L+GK

→
 Mloc,1−red

K,{µ}

Adσ L+GK

→
 Mloc,1−red

K,{µ}

Adσ LmGK

 = Sht
(m,1)
G,K,{µ}(2.3.1)

induced by the natural map Mloc,∞
K,{µ} → Mloc,1−red

K,{µ} and the natural map L+GK → LmGK .

Remark 2.3.2. There is a ‘local model diagram’

Mloc,1−red
K,{µ}

Sht
(m,1)
G,K,{µ} Mloc

K,{µ} .

The left-hand map is an LmGK-torsor while the right-hand map is a (GK)red-torsor. In particular,
the stack Sht

(m,1)
G,K,{µ} is an equidimensional pfp algebraic stack.7 Indeed Mloc

K,{µ} is pfp and equidimen-
sional and since the right-hand map is perfectly smooth of relative dimension dim(GK)red we find that
Mloc,1−red
K,{µ} is pfp and equidimensional by Lemma 2.1.6.

2.3.3. The goal of this section is to compare Sht
(m,1)
G,K,{µ} and Sht

(m′,1)
G,∅,{µ}. Unfortunately, there is no

natural map between them when K ̸= ∅. However, we will be able to construct a correspondence
between them instead, and study its properties, see Proposition 2.3.4, Lemma 2.3.9 and Section 2.3.10.

Consider the closed immersion L+G∅ ⊂ L+GK , which induces a closed immersion B ⊂ (GK)red,
where B is the image of L1G∅ in (GK)red; let γ : L+G∅ → B be the natural surjection. By Lemma
2.1.1, we can choose m≫ 0 such that the action Adσ L

+GK on ker γ\Mloc,∞
K,{µ} factors through LmGK .

As in equation (2.3.1), the natural maps

Mloc,∞
K,{µ} → ker γ\Mloc,∞

K,{µ}

L+GK → LmGK

7A quotient stack [X/G] is defined to be equidimensional if X is equidimensional. The dimension of [X/G] is defined
to be dimX −DimG whenever both X and G are finite dimensional. This is well-defined in view of Lemma 2.1.16.
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induce a natural map

ShtG,K,{µ} =

 Mloc,∞
K,{µ}

Adσ L+GK

→
ker γ\Mloc,∞

K,{µ}

Adσ LmGK

 .
For m as above, let Hm be the image of L+G∅ in LmGK . Since Mloc,∞

∅,{µ} ⊂ Mloc,∞
K,{µ}, it follows that the

action of L+G∅ ⊂ L+GK on ker γ\Mloc,∞
∅,{µ} factors through Hm. Therefore there is a natural map

ShtG,∅,{µ} =

 Mloc,∞
∅,{µ}

Adσ L+G∅

→
ker γ\Mloc,∞

∅,{µ}

AdσHm


induced by Mloc,∞

∅,{µ} → ker γ\Mloc,∞
∅,{µ} and L+G∅ → Hm.

Proposition 2.3.4. If m is an integer such that the action Adσ L
+GK on ker γ\Mloc,∞

K,{µ} factors through
LmGK , then the diagram

ShtG,∅,{µ}

[
ker γ\Mloc,∞

∅,{µ}
Adσ Hm

]

ShtG,K,{µ}

[
ker γ\Mloc,∞

K,{µ}
Adσ LmGK

]
,

where the right vertical map is induced by the closed immersions Mloc,∞
∅,{µ} ↪−→ Mloc,∞

K,{µ} and Hm ↪−→ LmGK ,
is Cartesian.

We start by proving a lemma.

Lemma 2.3.5. Both squares in the following diagram of perfect group schemes are Cartesian.

(2.3.2)
L+G∅ Hm B

L+GK LmGK (GK)red.

Proof. We first check that the outer square is Cartesian: It is enough to check this on k′-points for all
algebraically closed fields k′ because L+G∅ → L+GK is a closed immersion by [57, Lemma 1.2.(i)]. The
result on the level of k′-points is [5, Theorem 4.6.33].

The left square is Cartesian by definition of Hm and it therefore follows from general properties of
Cartesian squares that the right square is also Cartesian. □

Lemma 2.3.6. The stacks ker γ\Mloc,∞
∅,{µ}

AdσHm

 and

ker γ\Mloc,∞
K,{µ}

Adσ LmGK


are equidimensional of the same dimension.

Proof. To compute the dimensions we note that it follows from the right Cartesian square in Lemma
2.3.5 that

DimHm = DimLmGK − (Dim(GK)red −DimB)
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and thus it suffices to show that

Dim
(
ker γ\Mloc,∞

∅,{µ}

)
= Dim

(
ker γ\Mloc,∞

K,{µ}

)
−Dim(GK)red +DimB.

The map ker γ\Mloc,∞
∅,{µ} → Mloc

∅,{µ} is a B-torsor by construction and ker γ\Mloc,∞
K,{µ} → Mloc

K,{µ} is a
(GK)red-torsor by construction, see (2.3.2). Therefore the equality above is equivalent to the equality

DimMloc
K,{µ} = DimMloc

∅,{µ},

which is true, see Section 2.2.13. □

Proof of Proposition 2.3.4. Consider the following diagram, where the maps are defined as in (2.3.1)

ShtG,∅,{µ}

[
Mloc,∞

∅,{µ}
Adσ L+G∅

] [
ker γ\Mloc,∞

∅,{µ}
Adσ L+G∅

] [
ker γ\Mloc,∞

∅,{µ}
Adσ Hm

]

ShtG,K,{µ}

[
Mloc,∞

K,{µ}
Adσ L+GK

] [
ker γ\Mloc,∞

K,{µ}
Adσ L+GK

] [
ker γ\Mloc,∞

K,{µ}
Adσ LmGK

]
.

It follows from Lemma 2.3.5 that Pm := Ker (L+GK → LmGK) is contained in L+G∅ and that Pm
is also equal to the kernel of L+G∅ → Hm. We deduce that the right square is Cartesian by general
properties of quotient stacks (the right horizontal maps are Pm-gerbes in a compatible way). The
middle square is Cartesian by general properties of quotient stacks (the middle horizontal maps are
ker γ-torsors in a compatible way). We deduce that the outer square of the diagram is Cartesian. □

2.3.7. In this section we record two more lemmas.

Lemma 2.3.8. For each integer m′ ≥ 1 there is an integer m ≫ m′ such that there is an inclusion
ker (L+G∅ → Hm) ⊂ ker

(
L+G∅ → Lm

′G∅
)

of closed subschemes of L+G∅.

Proof. Fix m′. Recall that

L+GK ≃ lim←−
m

LmGK

L+G∅ ≃ lim←−
m

LmG∅,

and the first of these equalities moreover implies that L+G∅ ≃ lim←−mHm. The lemma now follows from
Lemma 2.1.1. □

It follows from Lemma 2.3.8 that for each m′ there is an m ≫ m′ such that the natural map
L+G∅ → Lm

′G∅ factors through the natural map L+G∅ → Hm via a surjection Hm → Lm
′G∅. Note

moreover that L+G∅ → L1G∅ = G∅ → (G∅)red factors through L+G∅ → L1G∅ → B because the maximal
reductive quotient of G∅ is isomorphic to the maximal reductive quotient of B. Thus there is a natural
map ker γ → ker(L+G∅ → (G∅)red) which induces a map ker γ\Mloc,∞

∅,{µ} → Mloc,1−red
∅,{µ} . Recall moreover

that for m≫ 0 the action Adσ L
+G∅ on Mloc,1−red

∅,{µ} factors through an action of Lm′G∅.

Lemma 2.3.9. Let m′ ≫ 0 be a positive integer and let m ≫ m′ satisfy the conclusion of Lemma
2.3.8. Then the map (induced by ker γ\Mloc,∞

∅,{µ} → Mloc,1−red
∅,{µ} and Hm → Lm

′G∅)ker γ\Mloc,∞
∅,{µ}

AdσHm

→
 Mloc,1−red

∅,{µ}

Adσ Lm
′G∅

 = Sht
(m′,1)
G,∅,{µ}
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is weakly perfectly smooth.

Proof. The natural map ker γ\Mloc,∞
∅,{µ}

AdσHm

→
Mloc,1−red

∅,{µ}

AdσHm

 = Sht
(m′,1)
G,∅,{µ}

is a torsor for ker(B → (G∅)red) and hence weakly perfectly smooth. The natural mapMloc,1−red
∅,{µ}

AdσHm

→
 Mloc,1−red

∅,{µ}

Adσ Lm
′G∅


is a gerbe for ker(Hm → Lm

′G∅) and is thus weakly perfectly smooth. It follows that the composition
is weakly perfectly smooth, and the lemma is proved. □

2.3.10. The stack
[
ker γ\Mloc,∞

K,{µ}
Adσ LmGK

]
is not a stack of restricted shtukas in the sense of Shen–Yu–Zhang

[50]. However, it is closely related to the more general stacks of restricted shtukas introduced in
[54, Section 5.3]. We define for n ≥ 2 the quotient

Mloc,n
K,{µ} := ker

(
L+GK → LnGK

)
\Mloc,∞

K,{µ} .

Then by Lemma 2.1.1, for m≫ n the action Adσ L
+GK on Mloc,n

K,{µ} will factor through LmGK and we
define

Sht
(m,n),loc
G,K,{µ} :=

 Mloc,n
K,{µ}

Adσ LmGK

 .
We have added the ‘loc’ in the superscript and the condition that n ≥ 2 so that these are not confused
with the previously introduced stacks of restricted shtukas (since the notation is not compatible).

The proof of Lemma 2.3.8 shows that for n≫ 0 we have an inclusion ker (L+GK → LnGK) ⊂ ker γ
and thus a natural map

Mloc,n
K,{µ} → ker γ\Mloc,∞

K,{µ} .

This induces a morphism (for m≫ n as before)

Sht
(m,n),loc
G,K,{µ} =

 Mloc,n
K,{µ}

Adσ LmGK

→
ker γ\Mloc,∞

K,{µ}

Adσ LmGK

 ,
which is a torsor for the image of ker γ in LnGK , and thus perfectly smooth.

2.3.11. The EKOR stratification. Recall that KAdm({µ}) is the intersection of Adm({µ}) with KW̃ ,
where KW̃ ⊂ W̃ denotes the subset of elements that are of minimal length in their left WK-coset. By
[50, Lemma 4.2.4], the underlying topological space of Sht(m,1)G,K,{µ} is isomorphic to KAdm({µ}) equipped
with the partial order topology (for the partial order ⪯ on KAdm({µ}) introduced in [50, page 3123]).
They use this to define locally closed substacks Sht(m,1)G,K,{µ}{w} for w ∈ KAdm({µ}) such that the locally
closed substack

Sht
(m,1)
G,K,{µ}{⪯ w} :=

⋃
w′⪯w

Sht
(m,1)
G,K,{µ}{w

′}.
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is closed. This allows us to define the Ekedahl–Kottwitz–Oort–Rapoport (EKOR) stratification on any
stack mapping to Sht

(m,1)
G,K,{µ}; for example on ShtG,K,{µ} via (2.3.1) and later on Shimura varieties of

Hodge type. Note that if K = ∅ then the EKOR stratification agrees with the Kottwitz–Rapoport
(KR) stratification from Section 2.2.13 and ⪯ agrees with ≤.

2.4. Affine Deligne–Lusztig varieties. Recall from [45, Section 2.3] that there is a partial order on
the set B(G) of σ-conjugacy classes in G(Q̆p). Let {µ} be a G(Qp)-conjugacy class of cocharacters of
GQp

and let B(G, {µ}) ⊂ B(G) be the set of neutral acceptable σ-conjugacy classes with respect to
{µ}, see [48, Definition 2.5].

2.4.1. Let E be an LG-torsor over k′, with k′ an algebraically closed field of characteristic p, and let
β : σ∗E → E be an isomorphism where σ is the absolute Frobenius. After choosing a trivialisation of
E , we see that β can be represented by an element bβ ∈ G(W (k′)[1/p]) well-defined up to σ-conjugacy.
Since the set of σ-conjugacy classes in G(W (k′)[1/p]) does not depend on the choice of algebraically
closed field k′, it thus gives us an element [bβ] ∈ B(G).

Let R be a perfect Fp-algebra, let E be an LG-torsor over R and let β : σ∗E → E be an isomorphism.
Then for [b] ∈ B(G), the subset (using the partial order introduced above)

(SpecR)≤[b] := {x ∈ SpecR : [bβ(x)] ≤ [b]}

is closed in SpecR by [45, Theorem 3.6.(ii)] and

(SpecR)[b] := {x ∈ SpecR : [bβ(x)] = [b]}
is locally closed. This gives us a stratification

ShtG,K :=
⋃

[b]∈B(G)

ShtG,K,[b],

where ShtG,K,[b] denotes the locally closed substack of ShtG,K whose R-points are given by the full
subgroupoid

ShtG,K,[b](R) ⊂ ShtG,K(R)

of maps SpecR→ ShtG,K such that (SpecR)[b] = SpecR. We will write ShtG,K,{µ},[b] for the intersec-
tion (fiber product over ShtG,K) of ShtG,K,{µ} and ShtG,K,[b]; we will see in Corollary 2.4.6 that this is
non-empty if and only if [b] ∈ B(G, {µ}).

2.4.2. Let K ⊂ S be a σ-stable type and let b ∈ G(Q̆p). Then we define the affine Deligne–Lusztig set

X(µ, b)K = {g ∈ G(Q̆p)/GK(Z̆p) | g−1bσ(g) ∈
⋃

w∈Adm({µ})K

GK(Z̆p)ẇGK(Z̆p)}.

Let Jb be the algebraic group over Qp whose R-points are given by

Jb(R) = {g ∈ G(Q̆p ⊗Qp R) | g−1bσ(g) = b}.

Then Jb(Qp) ⊂ G(Q̆p) acts on X(µ, b)K via left multiplication. By [18, Theorem 1.1], the set X(µ, b)K
is non-empty if and only if [b] ∈ B(G, {µ}). Moreover [18, Theorem 1.1] says that for J ⊂ K another
σ-stable type, the natural projection G(Q̆p)/GJ(Z̆p) → G(Q̆p)/GK(Z̆p) induces a Jb(Qp)-equivariant
surjection

X(µ, b)J → X(µ, b)K .

We will soon see that X(µ, b)K can be identified with the set of Fp-points of a perfect scheme, which
we will also denote by X(µ, b)K .
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2.4.3. Let K be a σ-stable type, let b ∈ G(Q̆p) and consider the functor X(µ, b)′K on Affperf
k sending

R to the set of isomorphism classes of commutative diagrams of modifications of GK-torsors on DR

(2.4.1)
σ∗E1 E1

σ∗E0 E0,

β1

σ∗β0 β0

b

such that β1 : σ∗E1 99K E1, considered as an element of HkK(R), lies in ∪w∈Adm({µ})K HkK(w)(R).
Here b is the modification of the trivial GK-torsor σ∗E0 ≃ E0 given by multiplication by b. We will
sometimes refer to β0 as a quasi-isogeny of shtukas from (E1, β1)→ (E0, b).

Lemma 2.4.4. The morphism X(µ, b)′K → GrK that sends a diagram as in (2.4.1) to β0 : E1 99K E0,
is a closed immersion. Moreover it identifies

X(µ, b)′K(Fp) ⊂ GrK(Fp) = G(Q̆p)/GK(Z̆p)

with the affine Deligne–Lusztig set X(µ, b)K from Section 2.4.2.

Proof. Consider the functor X(b) sending R to the set of isomorphism classes of commutative diagrams
of modifications of GK-torsors on DR

(2.4.2)
σ∗E1 E1

σ∗E0 E0

β1

σ∗β0 β0

b

as before, but now without the condition that β1 ∈
⋃
w∈Adm({µ})K HkK(w)(R). As before, [19, the

discussion after Remark 3.5] tells us that X(µ, b)′K is a closed subfunctor of X(b), and the lemma
would follow if we could show that the map

f : X(b)→ GrK

sending a diagram as in (2.4.2) to β0 : E1 99K E0 is an isomorphism. The map f is an isomorphism
because the map g : GrK → X(b) sending β0 : E1 99K E0 to the diagram

σ∗E1 E1

σ∗E0 E0.

β1

σ∗β0 β0

b

with β1 = β−1
0 bσ∗β0 is an inverse to f .

We see that X(µ, b)′K(Fp) is cut out from X(b)(Fp) = G(Q̆p)/GK(Z̆p) by the condition that β1 ∈⋃
w∈Adm({µ})K HkK(w)(Fp), in other words, that

β−1
0 bσ∗β0 ∈

⋃
w∈Adm({µ})

GK(Z̆p)ẇGK(Z̆p).

This is precisely the condition cutting out X(µ, b)K ⊂ G(Q̆p)/GK(Z̆p), and so we are done. □

From now on, we will write X(µ, b)K for X(µ, b)′K by abuse of notation. It follows from [15, Lemma
1.1] and [56, Corollary 2.5.3] that X(µ, b)K is actually a perfect scheme that is perfectly locally of
finite type.
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If b′ is σ-conjugate to b, that is if b′ = g−1bσ(g) with g ∈ G(Q̆p), then X(µ, b)K ≃ X(µ, b′)K via the
map

σ∗E1 E1

σ∗E0 E0.

β1

σ∗β0 β0

b

7→
σ∗E1 E1

σ∗E0 E0.

β1

σ(g)σ∗β0 gβ0

b′

We note that this map is nothing more than the action of g ∈ LG(Fp) on X(µ, b)K ⊂ GrK via the
natural left action of LG on GrK . For b′ = b this induces an action of the closed subgroup Fb ⊂ LG
on X(µ, b)K , where Fb is defined as the subfunctor of LG sending a perfect Fp-algebra R to the group

Fb(R) = {g ∈ LG(R) | g−1bσ(g) = b}.

The Fp-points of Fb are in bijection with Jb(Qp), where Jb is the algebraic group over Qp introduced
in Section 2.4.2.

Lemma 2.4.5. Consider the morphism Θb : X(µ, b)K → ShtG,K,{µ},[b], which sends a diagram as
in (2.4.1) to (E1, β1). This morphism is Fb-invariant and induces an isomorphism of stacks in the
pro-étale topology

ShtG,K,{µ},[b] ≃ [Fb\X(µ, b)K ] .

Moreover Fb is isomorphic to the locally profinite group scheme Jb(Qp) associated to the topological
group Jb(Qp).8

Proof. The morphism Θb is Fb-invariant, since the action of Fb on X(µ, b)K doesn’t change (E1, β1). For
a scheme T 7→ ShtG,K,{µ},[b], the set X(µ, b)K(T ) is the set of quasi-isogenies from (E1, β1) to (E0T , bT ),
which is either empty or has a simply transitive action of the group Fb(T ) of self quasi-isogenies of
(E0T , bT ). In other words, we have shown that Θb is a quasi-torsor for Fb. By [9, Theorem I.2.1], for
any GK-shtuka (E1, β1) ∈ ShtG,K,[b](T ), the quasi-torsor of quasi-isogenies to (E0T , bT ) has a section
pro-étale locally on T . Thus the map Θb is a pro-étale torsor for Fb, and so

ShtG,K,{µ},[b] ≃ [Fb\X(µ, b)K ] .

It also follows from [9, Theorem I.2.1] that Fb is isomorphic to the locally profinite group scheme
Jb(Qp) associated to Jb(Qp). □

Corollary 2.4.6. The stack ShtG,K,{µ},[b] is non-empty if and only if [b] ∈ B(G, {µ}).
Proof. This is a direct consequence of Lemma 2.4.5 in combination with the analogous result for
X(µ, b)K , which is [18, Theorem 1.1]. □

3. Uniformisation of isogeny classes

In this section we will recall the construction of the Kisin–Pappas integral models of Shimura varieties
of Hodge type with parahoric level structure, and recall the construction of Hamacher–Kim of shtukas
on the perfections of their special fibers. We also discuss the change-of-parahoric maps constructed
by Zhou in [55], and show that the shtukas of Hamacher–Kim are compatible with these maps using
results of [43].

We then recall the results from Appendix A about the existence of CM lifts for Shimura varieties
with very special level, and use that to deduce the existence of CM lifts for arbitrary parahorics. Next,

8For a topological group B we define B as the functor on Affperf
k sending R to the group of continuous functions

|SpecR| → B, where | SpecR| is the underlying topological space of SpecR. When B is profinite this is representable
by an affine group scheme, and thus when B is locally profinite it is representable by a group scheme.
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we study how uniformisation ‘lifts’ along the change-of-parahoric maps. Concretely, we will show that
uniformisation of isogeny classes at Iwahori level follows from uniformisation at very special level if a
certain diagram of stacks on Affperf

k is Cartesian.

3.1. Integral models of Shimura varieties. We recall the construction of the integral models of
Shimura varieties of Hodge type in [25]. Let (G,X) be a Shimura datum with reflex field E and let
{µh} be the G(C)-conjugacy class of cocharacters of GC defined in [55, Section 6]. Let Af denote
the ring of finite adeles and Apf the subring of Af with trivial p-component. Let Up ⊂ G(Qp) and
Up ⊂ G(Apf ) be compact open subgroups, write U = UpUp. Then for Up sufficiently small

G(Q)\X ×G(Af )/U
has the structure of an algebraic variety over C, which has a canonical model ShU (G,X) over the
reflex field E of (G,X). We will also consider the pro-varieties

ShUp(G,X) := lim←−
Up

ShUpUp(G,X)

Sh(G,X) := lim←−
U

ShU (G,X).

3.1.1. Let V be a vector space over Q of dimension 2g equipped with an alternating bilinear form
ψ. For a Q-algebra R, we write VR = V ⊗Q R. Let GV denote the corresponding group of symplectic
similitudes and let HV denote the set of homomorphisms h : S → GV,R corresponding to the Siegel
upper and lower half space, where S := ResC/RGm is the Deligne torus.

For the rest of this section, we fix an embedding of Shimura data ι : (G,X) → (GV ,HV ). We
sometimes write G for GQp when there is no risk of confusion. We will also assume for the rest of this
section that the following conditions hold

G splits over a tamely ramified extension of Qp and p ∤ |π1(Gder)|.
Let G be a connected parahoric subgroup of G, that is, G = Gx = G◦x for some x ∈ B(G,Qp), see Section
2.2.1. We will follow the notation of Section 2 to write G = GK for some σ-stable type K ⊂ S. By
[25, 2.3.15], after replacing ι by another symplectic embedding, there is a closed immersion GK → P,
where P is a parahoric group scheme of GV corresponding to the stabiliser of a lattice VZp ⊂ V . Upon
scaling VZp , we may assume V ∨

Zp
⊂ VZp . This induces a closed immersion of local models

M loc
GK ,X

→M loc
P,HV

⊗OE,v
for every place v of E above p. Here the local models are as introduced in [55, Section 3].

3.1.2. Let UpV ⊂ GV (Apf ) be a sufficiently small compact open subgroup. Let VZ(p)
= VZp ∩ V and

write GZ(p)
for the Zariski closure of G in GL(VZ(p)

), then GZ(p)
⊗Z(p)

Zp ∼= GK . The choice of VZ(p)

gives rise to a compact open subgroup UV,p ⊂ GV (Qp) which gives the Shimura variety ShUV
(GV ,HV )

of level UV = UpV UV,p an interpretation as a moduli space of (weakly polarised) abelian varieties up
to prime-to-p isogeny, and hence an integral model SUV

(GV ,HV ) over Z(p), which is described in
[55, Section 6.3].

3.1.3. For the rest of this paper, we fix an algebraic closure Q of E, and for each place v of Q an
algebraic closure Qv together with an embedding Q → Qv. By [26, Lemma 2.1.2], we can choose UpV
such that ι induces a closed immersion

ShU (G,X) ↪→ ShUV
(GV ,HV )E

defined over E. The choice of embedding E → Qp determines a place v of E. Write OE,(v) for the
localisation of OE at v, let Ev be the completion of E at v and OE,v the ring of integers of Ev.
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We assume the residue field has q = pr elements and as before k will denote an algebraic closure of
Fq. We define SU (G,X)− to be the Zariski closure of ShU (G,X) inside SUV

(GV ,HV ) ⊗Z(p)
OE,(v),

and SU (G,X) to be its normalisation. By construction, for Up1 ⊂ Up2 compact open subgroups of
G(Apf ), there are finite étale transition maps SUp

1Up
(G,X)→ SUp

2Up
(G,X) and we write SUp(G,X) :=

lim←−Up SUpUp(G,X). Under these assumptions we have the following result:

Theorem 3.1.4 ([25] Theorem 4.2.2, Theorem 4.2.7). The OE,(v) scheme SUp(G,X) is a flat G(Apf )-
equivariant extension of ShUp(G,X). Moreover SU (G,X)OE,v

fits in a local model diagram

S̃U (G,X)OE,v

π

&&
q

vv

SU (G,X)OE,v
M loc

GK ,X

where q is a GK-torsor and π is smooth of relative dimension dimG.

Note that the main result of [42] tells us that the integral model SU (G,X) does not depend on the
choice of Hodge embedding.

3.1.5. By [26, 1.3.2], the subgroup GZ(p)
is the stabiliser of a collection of tensors sα ∈ V ⊗

Z(p)
. Let

h : A → SU (G,X) denote the pullback of the universal abelian variety on SUV
(GV ,HV ) and let

VB := R1han,∗Z(p), where han is the map of complex analytic spaces associated to h. We also let
V = R1h∗Ω

• be the relative de Rham cohomology of A. Using the de Rham isomorphism, the tensors
sα give rise to a collection of Hodge cycles sα,dR ∈ V⊗C , where VC is the complex analytic vector
bundle associated to V. By [26, §2.2], these tensors are defined over E, and in fact over OE,(v) by
[25, Proposition 4.2.6].

Similarly, for a finite prime ℓ ̸= p, we let Vℓ = R1hét∗Qℓ and Vp = R1hη,ét∗Zp where hη is the generic
fibre of h. Using the étale-Betti comparison isomorphism, we obtain tensors sα,ℓ ∈ V⊗ℓ and sα,p ∈ V⊗p .
For ∗ = B, dR, ℓ and x ∈ SUpUp(G,X)(T ) for some OE,(v)-scheme T , we write Ax for the pullback of
A to T via x and sα,∗,x for the pullback of sα,∗ to T via x.

The image of x under SUpUp(G,X)→ SUV
(GV ,HV )⊗Z(p)

OE,(v) gives us a triple (Ax, λ, ϵpUV
) where

(Ax, λ) is a weakly polarised abelian variety up to prime-to-p isogeny and ϵpUV
is a UpV level structure.

As in [26, 3.4.2], the level structure ϵpUV
can be promoted to a section:

ϵpU ∈ Γ(T, Isomλ,ψ(V̂
p(A), VAp

f
)/Up)(3.1.1)

which takes sα,ℓ to sα for ℓ ̸= p.

3.1.6. Recall that Fp is an algebraic closure of Fq and Q̆p =W (Fp)[1/p]. Let x ∈ SU (G,X)(Fp) and
x ∈ SU (G,X)(OL) a point lifting x, where L/Q̆p is a finite extension.

Let Gx denote the p-divisible group associated to Ax and Gx,0 its special fiber. Then TpG ∨
x is

identified with H1
ét(Ax,Zp) and we obtain ΓK-invariant tensors sα,ét,x ∈ TpG ∨⊗ whose stabiliser can

be identified with GK . Let Dx := D(Gx,0) be the contravariant Dieudonné module associated to the
p-divisible group Gx,0. We may apply the constructions of [55, Section 3] to obtain φ-invariant tensors
sα,0,x ∈ Dx, whose stabiliser group can be identified with GK ⊗Zp Z̆p.

This means that we can upgrade the Dieudonné module of Ax to a GK-shtuka over Fp, and this
gives a map (see [55, Proof of Axiom 4 in Section 8])

SU (G,X)(Fp)→ ShtG,K,{µ}(Fp),(3.1.2)
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where {µ} = {σ(µ−1
h )}. It is a result of Hamacher–Kim ([14, Proposition 1], see [50, Poposition 4.4.1])

that there is a morphism ShG,K,Up → ShtG,K,{µ} inducing (3.1.2) on Fp-points, where ShG,K,Up is
the perfection of the basechange to k of SU (G,X).9 It follows from [43, Theorem 1.3.4]10 that this
morphism does not depend on the choice of Hodge embedding and moreover can be upgraded to a
G(Apf )-equivariant morphism

ShG,K := lim←−
Up

ShG,K,Up → ShtG,K,{µ},

where G(Apf ) acts trivially on ShtG,K,{µ}.
It follows from [50, the discussion after Theorem 4.4.3] that the perfection of the special fiber of

M loc
GK ,X

can be identified with the closed subscheme Mloc
K,{µ} of the affine flag variety for GK introduced

in Section 2.2.13. Under this isomorphism, the right action of L+GK on Mloc
K,{µ}, which factors through

GK , is identified with the GK action11 on the perfection of M loc
G,K,µ. Thus the local model diagram of

Theorem 3.1.4 gives us a (perfectly smooth) morphism

λK : ShG,K,Up → [Mloc
K,{µ} /GK ].

3.1.7. Fix n ≥ 2 and choose m≫ 0 such that the action Adσ L
+GK on Mloc,n

K,{µ} factors through LmGK
and such that m satisfies the assumptions of Proposition 2.3.4. Let Sht

(m,1)
G,K,{µ} be the stack of (m)-

restricted shtukas of type {µ} from Section 2.3 and also consider the stack Sht
(m,n),loc
G,K,{µ} from Section

2.3.10. If we compose the morphism ShG,K,Up → ShtG,K,{µ} constructed above with the natural map
ShtG,K,{µ} → Sht

(m,1)
G,K,{µ} we obtain a morphism

ShG,K,Up → Sht
(m,1)
G,K,{µ} .

By [50, Theorem 4.4.3], the perfectly smooth map λK : ShG,K,Up → [Mloc
K,{µ} /GK ] induced from the

local model diagram fits in a commutative diagram

ShG,K,Up Sht
(m,1)
G,K,{µ}

[Mloc
∅,{µ} /GK ],

λK

where Sht
(m,1)
G,K,{µ} → [Mloc

K,{µ} /GK ] comes from the diagram in Remark 2.3.2. Moreover [50, Theorem

4.4.3] tells us that the map ShG,K,Up → Sht
(m,1)
G,K,{µ} is perfectly smooth.

Recall moreover that there is a natural map ShtG,K,{µ} → Sht
(m,n),loc
G,K,{µ} which induces a map ShG,K,Up →

Sht
(m,n),loc
G,K,{µ} . When GK is hyperspecial, then it is proved in [54, Proposition 7.2.4] that this map is per-

fectly smooth, and the proof adapts to the parahoric case as in the proof of [50, Theorem 4.4.3].

9The subscript K is used to signify the choice of σ-stable type K ⊂ S corresponding to the parahoric subgroup Up.
10Pappas and Rapoport construct a ‘local shtuka bounded by {µ}’ over the diamond associated to the formal com-

pletion of SU (G,X) and prove uniqueness results for this object. By [43, Example 2.4.9], this induces a GK-shtuka over
the perfect special fiber of SU (G,X), which is of type {µ} by the discussion in [43, Section 2.4.3].

11Here we are writing GK for the perfection of the special fiber of GK , by abuse of notation.
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Remark 3.1.8. It has been pointed out to us by Manuel Hoff and Xinwen Zhu that the proof of
[54, Proposition 7.2.4] is not correct as written; the square in [54, top of page 113] does not commute.
The same error seems to be present in the proof of [50, Theorem 4.4.3]. Fortunately, the perfect
smoothness result that we will need is a consequence of the expected main result of the forthcoming
PhD thesis of Manuel Hoff [22].

We can use the perfectly smooth map ShG,K,Up → Sht
(m,1)
G,K,{µ} to define the EKOR stratification

on ShG,K,Up , see Section 2.3.11. In particular for w ∈ KAdm({µ}) we will write ShG,K,Up{w} for the
locally closed EKOR stratum of ShG,K,Up . Since ShG,K,Up → Sht

(m,1)
G,K,{µ} is perfectly smooth, we find

that the closure of ShG,K,Up{w} is given by

ShG,K,Up{⪯ w} :=
⋃
w′⪯w

ShG,K,Up{w′}

because the closure relations hold on Sht
(m,1)
G,K,{µ}.

3.1.9. Isogeny classes. Let x ∈ ShG,K,Up(Fp), then attached to x is an abelian variety Ax over Fp. We
write Dx for the contravariant Dieudonné module associated to the p-divisible group Gx of Ax; then
Dx is equipped with a corresponding set of tensors sα,0,x, see Section 3.1.6. Similarly, for ℓ ̸= p, the
ℓ-adic Tate module TℓAx is equipped with tensors sα,ℓ,x ∈ TℓA⊗

x .
Two points x, x′ ∈ ShG,K(Fp) are said to lie in the same isogeny class if there exists a quasi-isogeny

Ax → Ax′ such that the induced maps Dx[1/p]→ Dx′ [1/p] and VℓAx ⊗Qℓ → VℓAx′ ⊗Qℓ sends sα,0,x′
to sα,0,x and sα,ℓ,x to sα,ℓ,x′ for all ℓ ̸= p. We write Ix ⊂ ShG,K(Fp) for the isogeny class of x.

For x ∈ ShG,K(Fp) we let Ix denote the reductive Q-group associated to x as in [55, Section 9.2]; it is a
subgroup of the algebraic group of self quasi-isogenies of the abelian variety Ax. It comes equipped with
a natural map Ix,Ap

f
→ GAp

f
coming from the tautological basis of the prime-to-p adelic Tate-module

of Ax given by (the inverse limit over Up of) (3.1.1). If we choose an isomorphism α : Dx ≃ VZp ⊗Zp Z̆p
sending sα,0,x to sα⊗ 1, under which the Frobenius of Dx corresponds to b ∈ G(Q̆p), then there is also
an induced map Ix,Qp → Jb. Note that an isomorphism α as above always exists, by [55, Section 5.6].

3.1.10. Change of parahoric. Now let J ⊂ K be another σ-stable type, let GJ(Zp) =: U ′
p ⊂ Up and

let U ′ = UpU ′
p. We will use ShG,J,Up to denote the perfection of the special fiber of SU ′(G,X). By

[55, Theorem 7.1], there is a proper morphism πJ,K : SU ′(G,X) → SU (G,X) which induces the
obvious forgetful morphism on generic fibers and induces a G(Apf )-equivariant map

lim←−
Up

SU ′(G,X)→ lim←−
Up

SU (G,X).

We now recall the construction of the forgetful map from [55, Section 7.2]: There are facets f, f′ of the
extended Bruhat–Tits building B(G,Qp) of GQp such that Up is the stabiliser of f and such that U ′

p is
the stabiliser of f′. Under the embedding θ : B(G,Qp) → B(GV ,Qp) induced by G → GV we choose
facets g, g′ containing θ(f) and θ(f′) respectively, and we let Mp ⊂ GV (Qp) be the stabiliser of g and
M ′
p ⊂ GV (Qp) be the stabiliser of g′. As in [55, Section 8.1], the facets g, g′ correspond to lattice chains
L and L′ in VQp respectively, with L′ a refinement12 of L; note that [55] writes L′ for what we call L
and vice versa.

Then for sufficiently smallMp ⊂ GV (Apf ) there are moduli-theoretic integral models SMpM ′
p
(GV ,HV )

and SMpMp(GV ,HV ) over Z(p). The former is a moduli space of L′-chains of (weakly polarised) abelian
varieties up to prime-to-p isogeny with Mp level structure, as explained in [55, Proof of Axiom 1 in

12This means that L and L’ are chains of lattices in VQp and that every lattice in L is also contained in L′.
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Section 8], and the latter is a moduli space of L-chains of (weakly polarised) abelian varieties up to
prime-to-p isogeny with Mp level structure. There is a natural proper forgetful map

πL′,L : SMpM ′
p
(GV ,HV )→ SMpMp(GV ,HV )

which sends an L′-chain of abelian varieties to the underlying L-chain of abelian varieties.
Taking the direct sum of the lattices in the lattice chain L (resp. L′) we get a symplectic space VL

(resp. VL′) and a lattice VL,Zp (resp. VL′,Zp) in VL,Qp (resp. VL′,Qp). Let us denote the stabiliser of
VL,Zp (resp. VL′,Zp) in GVL(Qp) (resp. GVL′ (Qp)) by Jp (resp. J ′

p).
Then there are Hodge embeddings (GV ,HV ) → (GVL ,HVL) and (GV ,HV ) → (GVL′HVL′ ), which

take Mp to Jp and M ′
p to J ′

p respectively. These induce finite maps

SMpM ′
p
(GV ,HV )→ SJ ′pJ ′

p
(GVL′ ,HVL′ ), SMpMp(GV ,HV )→ SJpJp(GVL ,HVL)

for some Jp ⊂ GVL(A
p
f ) and J

′p ⊂ GVL′ (A
p
f ) sufficiently small, which take an L′-set (resp. L-set) of

abelian varieties to the product of all the abelian varieties in the L′-set (resp. the L-set), equipped
with the product polarisation and level structure. It is explained in [55, Equation 8.1 of Section 8]
that our forgetful maps fit in a commutative diagram where all the horizontal maps are finite

(3.1.3)

SU ′(G,X) SMpM ′
p
(GV ,HV )⊗OE,(v) SJ ′pJ ′

p
(GVL′HVL′ )⊗OE,(v)

SU (G,X) SMpMp(GV ,HV )⊗OE,(v) SJpJp(GVL ,HVL)⊗OE,(v).

πJ,K πL′,L

3.1.11. Change of parahoric and isogeny classes. We set ShG,J := lim←−Up ShG,J,Up and we let π :

ShG,J → ShG,K denote the G(Apf )-equivariant map induced by πJ,K . We now define isogeny classes in
ShG,J(Fp) using the Hodge embedding (G,X)→ (GVL′HVL′ ), as in Section 3.1.9. Similarly, we define
isogeny classes in ShG,K(Fp) using the Hodge embedding (G,X) → (GVL ,HVL). By [55, Proposition
7.7], the forgetful map is compatible with isogeny classes in the sense that for x ∈ ShG,J(Fp) we have
π (Ix) ⊂ Iπ(x). We will need the following refinement:

Proposition 3.1.12. Let z, y ∈ ShG,J(Fp) with the same image x ∈ ShG,K(Fp). Then z and y lie in
the same isogeny class. In particular Iz = π−1(Ix).

Proof. This follows as in the proof of [55, Proposition 7.7]. The point is that the two L′-sets of abelian
varieties associated to z and y have the same underlying L-set of abelian varieties, namely the one
associated to π(z) = π(y). Therefore there is a unique quasi-isogeny of L′-sets of abelian varieties
extending the identification of the underlying L-sets. This induces a quasi isogeny Ax 99K Ay on the
products of the abelian varieties in the L′-set, and it can be checked as in the proof of [55, Proposition
7.7] that this quasi-isogeny takes the tensors for Ay to the tensors for Ax. □

We will also need the following lemma.

Lemma 3.1.13. The following diagram commutes:

ShG,J,Up ShtG,J,{µ}

ShG,K,Up ShtG,K,{µ} .

Proof. This is a consequence of [43, Corollary 4.3.2]. □
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3.2. CM Lifts. In this section, we will prove a corollary of Theorem A.4.5. This corollary is a slight
generalisation of Theorem 1.

Corollary 3.2.1. Let U ′
p ⊂ G(Qp) be an arbitrary connected parahoric and suppose that there is a

connected Iwahori subgroup U ′′
p contained in U ′

p and a connected very special parahoric subgroup Up
containing U ′′

p . Then each isogeny class of SU ′
p
(G,X)(Fp) contains a point x which is the reduction of

a special point on ShU ′
p
(G,X).

Proof. Choose a connected Iwahori subgroup U ′′
p ⊂ U ′

p and a connected very special parahoric subgroup
Up ⊃ U ′′

p as in the assumptions of the theorem. We first prove the theorem for SU ′′
p
(G,X).

Let z ∈ SU ′′
p
(G,X)(Fp) and let x be its image in SUp(G,X)(Fp). Then the isogeny class Ix contains

the reduction of a special point P ∈ SUp(G,X)(Q) by Theorem A.4.5. This means that the Mumford–
Tate group of P is a torus and the same is true for any lift P ′′ ∈ SU ′′

p
(G,X)(Q). Thus we find that

the inverse image of Ix under

SU ′′
p
(G,X)(Fp)→ SUp(G,X)(Fp)

contains the reduction of a special point. But by Proposition 3.1.12, this inverse image is equal to
Iz and so every isogeny class in SU ′′

p
(G,X)(Fp) contains the reduction of a special point. A similar

argument shows that every isogeny class in SU ′
p
(G,X)(Fp) contains the reduction of a special point. □

3.3. Lifting uniformisation. From now on we let K ⊂ S be a σ-stable type corresponding to a
connected very special parahoric. We let Up = GK(Zp) and U ′

p = G∅(Zp); note that U ′
p is a connected

parahoric subgroup by Lemma 2.2.4. In this case, the commutative diagram from Lemma 3.1.13 is

(3.3.1)

ShG,∅,Up ShtG,∅,{µ}

ShG,K,Up ShtG,K,{µ} .

The goal of this section is to prove the following result. Let x ∈ ShG,∅(Fp) and choose an isomorphism
Dx ≃ VZp⊗Zp Z̆p sending sα,0,x to sα⊗1. Let b ∈ G(Q̆p) be the element corresponding to the Frobenius
of Dx under this isomorphism.

Theorem 3.3.1. If for every sufficiently small compact open subgroup Up the diagram (3.3.1) is Carte-
sian, then for z ∈ SU ′

p
(G,X)(Fp) with associated element b ∈ G(Q̆p) there is a G(Apf )-equivariant

bijection

Iz(Q)\X(µ, b)∅(Fp)×G(A
p
f )→ Iz.

3.3.2. Let z ∈ SU ′
p
(G,X)(Fp) with image x ∈ SUp(G,X)(Fp) and let b ∈ G(Q̆p) be as in the statement

of Theorem A.4.5. Then Theorem A.4.5 gives us a map of sets

G(Apf )×X(µ, b)K(Fp)→ Ix

and Lemma 2.4.5 gives us a map of stacks Θb : X(µ, b)K → ShtG,K,{µ},[b].

Lemma 3.3.3. The following diagram of groupoids commutes

G(Apf )×X(µ, b)K(Fp) X(µ, b)K(Fp)

Ix ShtG,K,{µ},[b](Fp).

pr2

Θb
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Proof. This follows from the compatibility of the uniformisation map with the ‘joint stratification’
ShG,K,Up(Fp)→ ShtG,K,{µ}(Fp), as discussed in the proof of Axiom 4(b) in Section 8 of [55]. □

Lemma 3.3.4. Let Jx be the inverse image in ShG,∅(Fp) of Ix ⊂ ShG,K(Fp). If the assumption of
Theorem 3.3.1 holds, then there is a G(Apf )-equivariant bijection

Jx ≃ Ix(Q)\X(µ, b)∅(Fp)×G(A
p
f ).

Proof. Taking the inverse limit over Up of the Cartesian diagram of (3.3.1), we get the following
G(Apf )-equivariant Cartesian diagram of groupoids

(3.3.2)

Jx ShtG,∅,{µ}(Fp)

Ix ShtG,K,{µ}(Fp).

Theorem A.4.5 gives us a bijection Ix(Q)\X(µ, b)K(Fp) × G(Apf ) → Ix, and Lemma 2.4.5 gives us
equivalences of groupoids

ShtG,K,{µ}(Fp) ≃
[
X(µ, b)K(Fp)

Jb(Qp)

]
, ShtG,∅,{µ}(Fp) ≃

[
X(µ, b)∅(Fp)
Jb(Qp)

]
.

Lemma 3.3.3 tells us that we can identify (3.3.2) with

Jx

[
X(µ,b)∅(Fp)
Jb(Qp)

]

Ix(Q)\X(µ, b)K(Fp)×G(Apf )
[
X(µ,b)K(Fp)

Jb(Qp)

]
,

such that the bottom map is induced by the projection map X(µ, b)K(Fp) × G(Apf ) → X(µ, b)K(Fp)
and the right vertical map is induced by the natural map X(µ, b)∅(Fp)→ X(µ, b)K(Fp). But now it is
clear that there is a G(Apf )-equivariant bijection

Jx ≃ Ix(Q)\X(µ, b)∅(Fp)×G(A
p
f ).

□

Proof of Theorem 3.3.1. The theorem is a direct consequence of Lemma 3.3.4, which proves uniformi-
sation for Jx, and Proposition 3.1.12, which proves that Jx = Iz. □

3.4. Uniformisation and connected components. Define G(Q)+ = G(Q) ∩ G(R)+, with G(R)+
the inverse image of the identity component (in the real topology) of Gad(R) under the natural map
G(R) → Gad(R). Let ρ : Gsc → Gder be the simply-connected cover of the derived subgroup of G;
we will sometimes conflate groups like Gsc(Q) and Gsc(Apf ) with their images under ρ by abuse of
notation. Consider the set

π(G) := lim←−
Up

G(Q)+\G(Af )/UpUp.

Now we have ρ(Gsc(Q)) ⊂ G(Q)+ since Gsc(R) is connected, and strong approximation for Gsc away
from ∞, see [44, Theorem 7.12], tells us that the closure of ρ(Gsc(Q)) in G(Af ) contains ρ(Gsc(Af )).
Moreover, the subset G(Q)+ρ(G

sc(Af )) is closed in G(Af ) since (G,X) is of Hodge type, see [7, Section
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2.0.15]. This means that G(Q)+\G(Af )/ρ(Gsc(Af )) is Hausdorff, and we can therefore deduce from
[37, Lemma 4.20] that the natural map

G(Q)+\
G(Af )

ρ(Gsc(Af ))
/Up → π(G)

is a homeomorphism. We see that π(G) is an abelian group since G(Af )
ρ(Gsc(Af ))

is.

3.4.1. By Lemma 3.4.2 below, we may make the identification

π(G) = G(Q)+\

(
π1(G)

σ
I ×

G(Apf )
ρ(Gsc(Apf ))

)
.

In particular there is a natural surjective group homomorphism π1(G)
σ
I ×G(A

p
f )→ π(G).

Lemma 3.4.2. Let G be a connected reductive group over Qp and let G be a parahoric group scheme
for G. Then there is a natural isomorphism

G(Qp)

ρ(Gsc(Qp)) · G(Zp)
≃ π1(G)σI .

Proof. Recall that we have the surjective Kottwitz homomorphism k̃G : G(Q̆p) → π1(G)I with kernel
given by ρ(Gsc(Q̆p)) · T (Z̆p) = ρ(Gsc(Q̆p)) · G(Z̆p) (see [41, Lemma 17 of the appendix]), where T is the
connected Néron model of a standard torus T of G. Recall moreover that k̃G restricts to a surjective
map G(Qp) → π1(G)σI by [29, Section 7.7]. Thus when G = T is a torus, we have a short exact
sequence

0→ T (OL)→ T (L)→ π1(G)I → 0,

that remains exact upon taking σ-invariants, proving the lemma for tori. If Gder is simply connected,
then there is a canonical identification π1(G) = π1(Gab), where Gab is the maximal abelian quotient
of G. We can consider the morphism of short exact sequences

1 Gder(Qp) G(Qp) Gab(Qp) 1

1 π1(G)σI π1(Gab)σI 1.

The lemma now follows from the well known fact that the image of G(Zp) in Gab(Qp) is equal to D(Zp),
where D is the connected Néron model of Gab. For general G, we can reduce to the case that Gder is
simply connected using a z-extension argument, see the proof of [41, Lemma 17 of the appendix] or
[29, Section 7.7]. □

3.4.3. Define (cf. [7, Section 2.1.3])

π(G,X) := lim←−
Up

π0(ShU (G,X)C) = lim←−
Up

G(Q)\ (π0(X)×G(Af )/UpUp) .

This is a quotient of

lim←−
U

G(Q)\ (π0(X)×G(Af )/U) ,

on which G(Af ) acts through the abelian group G(Af )/ρ(Gsc(Af )), again by strong approximation for
Gsc away from infinity. By the discussion above, this induces an action of G(Apf )×π1(G)

σ
I on π(G,X)

which makes it into a torsor for π(G).
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Recall that Up is a very special parahoric, which implies that the integral model SUpUp(G,X) has
locally integral special fiber; see [25, Collary 4.6.26]. Then [36, Corollary 4.1.11] tells us that for all
choices of Up, for each finite extension F of the reflex field E and any place w of F extending v, the
natural maps

π0(ShUpUp(G,X)⊗E F )← π0(SUpUp(G,X)⊗OE,(v)
OF,(w))→ π0(ShG,K,Up ⊗k(w))

are isomorphisms. Thus there is a natural G(Apf )-equivariant isomorphism π0(ShG,K) → π(G,X),
which turns π0(ShG,K) into a torsor for π(G) and equips it with an action of G(Apf )× π1(G)

σ
I .

3.4.4. As before GK denotes a connected very special parahoric group scheme. Let x ∈ ShG,K(Fp)
and b ∈ G(Q̆p) the associated element that is well-defined up to GK(Z̆p)-conjugacy. The Kottwitz
homomorphism induces a natural map

κ : X(µ, b)K → GrK → π0(GrK) ≃ π1(G)I ,

with image c[b],µ + π1(G)
σ
I ⊂ π1(G)I , see [19, Lemma 6.1]. As in [55, Section 6.7] we have 1 ∈

X(µ, b)K(Fp), which implies that the coset c[b],µ + π1(G)
σ
I contains 1 and is thus equal to π1(G)σI . In

particular, the map κ takes values in π1(G)σI . Theorem A.4.5 gives us a G(Apf )-equivariant map

ix : X(µ, b)K(Fp)×G(Apf )→ ShG,K(Fp),

sending (1, 1) to x.

Proposition 3.4.5. Consider the composition X(µ, b)K(Fp) × G(Apf ) → ShG,K(Fp) → π0(ShG,K) =

π(G,X), and let x be the image of x in π(G,X). Then the image of (y, gp) in π(G,X) is given by

(κ(y), gp) · x,

where · denotes the natural action of π1(G)σI ×G(A
p
f ) on π(G,X) constructed above.

Proof. By the G(Apf )-equivariance of the map ix, it suffices to prove the theorem for gp = 1 or for
the map X(µ, b)K(Fp) → ShG,K(Fp). The map X(µ, b)K(Fp) → ShG,K(Fp) upgrades to a map of
perfect schemes X(µ, b)K → ShG,K by the proof of [20, Proposition 5.2.2]. Therefore the image of
y ∈ X(µ, b)K(Fp) in π(G,X) only depends on the connected component that y lies in. Thus the result
is true for a union of connected components X(µ, b)◦K of X(µ, b)K . Moreover, the result is clearly true
for y = 1.

Now we follow the proof of Proposition A.4.3 and freely use the notation from that proof: Let
M ⊂ GQp be the standard Levi subgroup given by the centraliser of the Newton cocharacter νb. By
Theorem A.1.3, there exists λ ∈ Iµ,b,M and an element

g ∈ X(µ, b)◦K ∩XM (λ, b)M .

We may then replace x by ix(g) to assume that b ∈M(Q̆p) and furthermore that b = τ̇λ where τλ ∈ ΩM
corresponds to κM (b) ∈ π1(M)I .

Arguing as in the proof of A.4.3, we can find a finite extension L of Q̆p and choose an (M,µy)-
adapted lifting G̃ /OL of Gx (cf. [55, Definition 4.6]) which corresponds to a point x̃ ∈ SUp(G,X)(OL).
The construction in [55, Proposition 5.14] gives us a map

ι :M(Qp)/M(Zp)→ XM (λ, b)KM
,
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whose composition with XM (λ, b)KM
→ X(µ, b)K fits into the following commutative diagram

M(Qp) X(µ, b)K(Fp)

π1(G)
σ
I ,

κ

where the left diagonal map is the composition M(Qp) → G(Qp) → π1(G)
σ
I . Choose a lift of x̃ to a

point z ∈ Sh(G,X)(C), where C is an algebraic closure of Q̆p. Then by construction the map ι fits
into the following diagram (compare with the diagram in [27, Corollary 1.4.12])

M(Qp) SUp(G,X)(OC)

X(µ, b)K(Fp) ShG,K(Fp).

Here the top horizontal map is given by the (Hecke) action of M(Qp) ⊂ G(Qp) on z ∈ Sh(G,X)(C)
followed by projection to back to SUp(C) and extending to SUp(G,X)(OC).

We see that elements g ∈ X(µ, b)K(Fp) in the image ofM(Qp)→ X(µ, b)K(Fp) satisfy the conclusion
of the proposition. Moreover, this means that the result holds for all points g ∈ X(µ, b)K(Fp) lying in
a connected component of X(µ, b)K intersecting the image of the map M(Qp) → X(µ, b)K(Fp). But
the map

M(Qp)/M(Zp)→ π0(X
M (λ, b)KM

)

is surjective by [55, Proposition 5.19] and moreover

π0(X
M (λ, b)KM

)→ π0(X(µ, b)K)

is surjective by Theorem A.1.3. Thus every connected component of X(µ, b)K contains a point in the
image of M(Qp)→ X(µ, b)K(Fp), and so we are done. □

Corollary 3.4.6. Let τ ∈ Adm({µ}) be the unique element of length zero. Then

ShG,∅,Up(τ)→ π0(ShG,K,Up)

is surjective.

Proof. It suffices to prove this for the analogous map ShG,∅(τ) → π0(ShG,K). Since ShG,∅(τ) is con-
tained in the basic locus we can use [55, Proposition 6.5(i)] to produce for x ∈ ShG,∅(τ) a uniformisation
map

X(µ, b)∅ ×G(A
p
f )→ ShG,∅

which, as in [55, proof of Axiom 5], restricts to a map

ix : X(µ, b)∅(τ)×G(A
p
f )→ ShG,∅(τ).

Moreover, the following diagram commutes (by construction, see [55, Proposition 7.8])

X(µ, b)∅(τ)×G(A
p
f ) ShG,∅(τ)

X(µ, b)K ×G(Apf ) ShG,K .

ix

iπ∅,K (x)

Since X(µ, b)∅(τ) ⊂ X(µ, b)∅ is Jb(Qp)-stable, it follows that its image in X(µ, b)K is Jb(Qp)-stable.
Thus its image surjects onto π1(G)σI via κ, because Jb(Qp) surjects onto π1(G)σI since b is basic, see
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Lemma 3.4.2. The result now follows from Proposition 3.4.5 and the fact that π1(G)σI × G(A
p
f ) acts

transitively on π0(ShG,K). □

Corollary 3.4.7. For w ∈ Adm({µ}), the map

ShG,∅,Up(w)→ π0(ShG,K,Up)

is surjective.

Proof. By [16, Theorem 4.1], this follows from Corollary 3.4.6. □

4. The Cartesian diagram

Let the notation be as in Section 3, in particular GK is a connected very special parahoric group
scheme. Define a sheaf ŜhG,∅,Up via the following fiber product diagram

(4.0.1)
ŜhG,∅,Up ShtG,∅,{µ}

ShG,K,Up ShtG,K,{µ} .

In particular, ŜhG,∅,Up is ShG,U ′,⋆ from the introduction. Proposition 2.2.15 tells us that ŜhG,∅,Up is
(representable by) a perfect algebraic space which is perfectly proper over ShG,K,Up . The universal
property of the fiber product gives us a morphism ι : ShG,∅,Up → ŜhG,∅,Up and the goal of this section
is to show that ι is an isomorphism, under some hypotheses.

In Section 4.1 we will show that ι is a closed immersion. In Section 4.2 we will show that ŜhG,∅,Up is
equidimensional of the same dimension as ShG,K,Up . In Section 4.3 we will show that each irreducible
component of ŜhG,∅,Up can be moved into ShG,∅,Up using prime-to-p Hecke operators. We prove this by
degenerating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport–Zink
uniformisation of the basic locus.

4.1. The natural map is a closed immersion. Because the morphism ShG,K → ShtG,K,{µ} is
G(Apf )-equivariant, see [43, Theorem 1.3.4], we can form ŜhG,∅,Up for every choice of prime-to-p level
subgroup Up. Then there is an induced action of G(Apf ) on ŜhG,∅ := lim←−Up ŜhG,∅,Up , such that the
natural maps ShG,∅ → ŜhG,∅ and ŜhG,∅ → ShG,K are G(Apf )-equivariant.

4.1.1. Let P,P ′ be the parahoric group schemes with P(Zp) = Mp and P ′(Zp) = M ′
p, see Section

3.1.10. Let ShGV ,P ′,Mp and ShGV ,P,Mp be the perfections of the geometric special fibers of the schemes
(introduced in Section 3.1.10)

SMpM ′
p
(GV ,HV )⊗Z(p)

OE,v and SMpMp(GV ,HV )⊗Z(p)
OE,v,
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respectively. Now consider the following commutative diagram deduced from (3.1.3) (which is commu-
tative by [43, Theorem 4.3.1]).

(4.1.1)

ShG,∅,Up ŜhG,∅,Up ShtG,∅,{µ}

ShGV ,P ′,Mp ShtGV ,P ′,{µ}

ShG,K,Up ShtG,K,{µ}

ShGV ,P,Mp ShtGV ,P,{µ} .

Lemma 4.1.2. The front face of the cube, that is, the square involving ShGV ,P ′,Mp , ShtGV ,P ′,{µ},
ShGV ,P,Mp and ShtGV ,P,{µ} is Cartesian.

Proof. The stack ShtGV ,P ′,{µ} is13a moduli stack of L′-chains of (polarised) p-divisible groups and
the stack ShtGV ,P,{µ} is a moduli stack of L-chains of polarised p-divisible groups. The natural map
ShGV ,P ′,Mp → ShtGV ,P ′,{µ} sends an L′-chain of abelian varieties to the corresponding L′-chain of
p-divisible groups. The map ShGV ,P,Mp → ShtGV ,P,{µ} has a similar description. Moreover, the map
ShtGV ,P ′,{µ} → ShtGV ,P,{µ} sends an L′-chain of (polarised) p-divisible groups to the underlying L-
chain of (polarised) p-divisible groups.

The statement of the lemma now comes down to the following claim: Given an L-chain AL of (weakly
polarised) abelian varieties, an L′-chain XL′ of (polarised) p-divisible groups and an isomorphism from
A[p∞]L to the underlying L-chain of XL, then there is a unique L′-chain of abelian varieties AL′

with underlying L-chain given by AL and with p-divisible group A[p∞]L′ = XL′ . This claim follows
from the following simpler claim: Given an abelian variety A and a quasi-isogeny of p-divisible groups
f : A[p∞]→ X, there is a unique triple (B,α, g) where B is an abelian variety, where α : B[p∞]→ X
is an isomorphism and g : A 99K B is a p-power quasi-isogeny such that α ◦ g = f . The proof of this
simpler claim is explained in [46, Section 6.13]. □

Lemma 4.1.3. The dotted arrow in (4.1.1) exists.

Proof. This is an immediate consequence of Lemma 4.1.2 and the universal property of the fiber
product. □

Proposition 4.1.4. The morphism ι : ShG,∅,Up → ŜhG,∅,Up induced by the universal property of
ŜhG,∅,Up is a closed immersion.

We start by recalling a lemma.

Lemma 4.1.5. If f : X → Y is a perfectly proper morphism between pfp algebraic spaces over Fp that
induces a bijection on Fp-points, then f is an isomorphism.

Proof. This follows from [2, Corollary 6.10] and its proof. □

Proof of Proposition 4.1.4. The map ι is a morphism of perfect algebraic spaces that are perfectly
proper over ShG,K,Up , and ι is therefore perfectly proper; in particular, the image of ι is closed.

13To be precise, the stack ShtGV ,P′,{µ} is a stack of L′-chains of polarised Dieudonné modules. By [34, Theorem 1.2],
for a perfect ring R there is an equivalence of categories between L′-chains of polarised Dieudonné modules over W (R)
and L′-chains of polarised p-divisible groups over SpecR, which gives the desired description of ShtGV ,P′,{µ}(R).
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Let Z ⊂ ŜhG,∅,Up be the image of ι, equipped with the reduced induced scheme structure, then
ι : ShG,∅,Up → ŜhG,∅,Up factors through Z because ShG,∅,Up is reduced. We want to show that ι :
ShG,∅,Up → Z is an isomorphism, and by Lemma 4.1.5 it is enough to show that it induces a bijection
on Fp-points. Since ι is surjective, it suffices to prove injectivity.

Now [55, Corollary 6.3] tells us that a point x ∈ ShG,∅,Up(Fp) is determined by its image in
ShGV ,P ′,Mp(Fp) and the tensors in the Dieudonné module of its p-divisible group. The tensors are de-
termined by the image of x in ShtG,∅,{µ}(Fp). By Lemma 4.1.3, the morphism ShG,∅,Up → ShGV ,P ′,Mp

factors through ŜhG,∅,Up and so the image of x in ŜhG,∅,Up(Fp) remembers both the image of x in
ShGV ,P ′,Mp(Fp) and the image of x in ShtG,∅,{µ}(Fp); the lemma is proved. □

Lemma 4.1.6. The morphism f : ŜhG,∅,Up → ShGV ,P ′,Mp constructed in Lemma 4.1.3 is finite.

Proof. By the proof of Proposition 4.1.4 there is a commutative diagram

(4.1.2)
ŜhG,∅,Up ShGV ,P ′,Mp

ShG,K,Up ShGV ,P,Mp

ξ

f

χ

f ′

with f ′ finite. It suffices to show that f is quasi-finite, since its source and target are perfectly proper
over ShGV ,P,Mp . We will show that for x ∈ ShG,K,Up(Fp) with image y = f ′(x) the map

f : ξ−1(x)→ χ−1(y)

is injective, which implies the quasi-finiteness.
To prove this injectivity on fibers we return to the commutative cube from Section 4.1.1, see equation

4.1.1. The square involving the four objects with subscript G is Cartesian by construction, and the
square involving the four objects with subscript GV is Cartesian by Lemma 4.1.2. Since Cartesian
squares induce isomorphisms on fibers of maps, the injectivity of the map on fibers in (4.1.2) can
instead be proved for the square

ShtG,∅,{µ} ShtGV ,P ′,{µ}

ShtG,K,{µ} ShtGV ,P,{µ} .

Moreover, since the spaces of shtukas of type {µ} sit inside the spaces of all shtukas, we can reduce to
showing the injectivity of the map on fibers for

ShtG,∅ ShtGV ,P ′

ShtG,K ShtGV ,P .

Recall from the proof of Corollary 2.2.11 the Cartesian diagrams (equation (2.2.2))

ShtG,∅ ShtG,K

BL+G∅ BL+GK ,

ShtGV ,P ′ ShtGV ,P

BL+P ′ BL+P,
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that fit into a commutative cube that we will not draw. This reduces the problem to showing the
injectivity statement for the map on fibers in the diagram

BL+G∅ BL+P ′

BL+GK BL+P,

which comes down to showing injectivity of the map of partial flag varieties

L+GK
L+G∅

→ L+P
L+P ′ .

This last statement follows from the fact that the intersection of L+P ′ with L+GK is equal to L+G∅.
This is true by construction of P,P ′ and the fact that GK and G∅ are connected parahoric subgroups
(the first by assumption, the second by Lemma 2.2.4). □

4.2. A perfect local model diagram. Consider the composition (the last arrow comes from the
diagram in Remark 2.3.2)

ŜhG,∅,Up → ShtG,∅,{µ} → Sht
(m,1)
G,∅,{µ} →

[
Mloc

∅,{µ} /G∅
]
.

We will think of this as a local model diagram for ŜhG,∅,Up .

Proposition 4.2.1. The morphism ŜhG,∅,Up →
[
Mloc

∅,{µ} /G∅
]

is weakly perfectly smooth and ŜhG,∅,Up

is equidimensional of the same dimension as ShG,∅,Up .

Proof. We will use the results of Section 2.3. Fix n ≥ 2 and choose m ≫ 0 such that the action
Adσ L

+GK on Mloc,n
K,{µ} factors through LmGK and such that m satisfies the assumption of Proposition

2.3.4. As explained in Section 3.1.7 the natural morphism

ShG,K,Up → Sht
(m,n),loc
G,K,{µ}

is perfectly smooth. Combining this with the discussion in Section 2.3.10, we find that (after possibly
increasing n) the composition with the natural map

Sht
(m,n),loc
G,K,{µ} →

ker γ\Mloc,∞
K,{µ}

Adσ LmGK


is weakly perfectly smooth. Proposition 2.3.4 implies that the right square in the following diagram is
Cartesian

(4.2.1)

ŜhG,∅,Up ShtG,∅,{µ}

[
ker γ\Mloc,∞

∅,{µ}
Adσ Hm

]

ShG,K,Up ShtG,K,{µ}

[
ker γ\Mloc,∞

K,{µ}
Adσ LmGK

]
.

Since the left square is Cartesian by construction, it follows that the outer square is also Cartesian.
Moreover, Lemma 2.3.6 tells us that the stack in the bottom right corner of (4.2.1) is equidimensional.
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We know that ShG,K,Up is also equidimensional and that the map

ShG,K,Up →

ker γ\Mloc,∞
K,{µ}

Adσ LmGK


is weakly perfectly smooth. Thus by Lemma 2.1.16 this map must be weakly perfectly smooth of
constant relative dimension M . Because the diagram in (4.2.1) is Cartesian, it follows that the natural
map

ŜhG,∅,Up →

ker γ\Mloc,∞
∅,{µ}

AdσHm


is also weakly perfectly smooth of constant relative dimension M . By Lemma 2.3.6, both stacks in
the rightmost column of (4.2.1) are equidimensional of the same dimension. We deduce from Lemma
2.1.16 that ŜhG,∅,Up is equidimensional of the same dimension as ShG,K,Up and thus equidimensional
of the same dimension as ShG,∅,Up .

After possibly increasing m, we may choose 0 ≪ m′ ≪ m and invoke Lemma 2.3.9, which tells us
that the natural map ker γ\Mloc,∞

∅,{µ}

AdσHm

→ Sht
(m′,1)
G,∅,{µ}

is weakly perfectly smooth. It follows from [50, Proposition 4.2.5] that the natural map

Sht
(m′,1)
G,∅,{µ} →

[
Mloc

∅,{µ} /G∅
]

is weakly perfectly smooth. Therefore the map λ̂ : ŜhG,∅,Up →
[
Mloc

∅,{µ} /G∅
]

is a composition of weakly
perfectly smooth maps, and hence weakly perfectly smooth. □

4.2.2. For w ∈ Adm({µ}), we define the Kottwitz–Rapoport (KR) stratum ŜhG,∅,Up(w) to be the
inverse image of the locally closed substack[

Mloc
∅,{µ}(w)/G∅

]
⊂
[
Mloc

∅,{µ} /G∅
]

under the weakly perfectly smooth map λ̂ : ŜhG,∅,Up →
[
Mloc

∅,{µ} /G∅
]
. Similarly, we define

ŜhG,∅,Up(≤ w) :=
⋃
w′≤w

ŜhG,∅,Up(w′),(4.2.2)

which is the same as the closure of ŜhG,∅,Up(w) because λ̂ is open and since the closure relations hold
on Mloc

∅,{µ}, see Section 2.2.12.

Corollary 4.2.3. For w ∈ Adm({µ}), the closure ŜhG,∅,Up(≤ w) has dimension ℓ(w) and is locally
integral.

Proof. Let d = DimShG,∅,Up = DimMloc
∅,{µ}. Then the local model Mloc

∅,{µ} is the union of Mloc
∅,{µ}(≤ w)

for w ∈ Adm({µ}) of length d, and for such w the KR stratum Mloc
∅,{µ}(≤ w) is equidimensional of
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dimension d and stable under the action of G∅. Using λ̂, we see that

ŜhG,∅,Up =
⋃

w∈Adm({µ})
ℓ(w)=d

ŜhG,∅,Up(≤ w),

and since ŜhG,∅,Up is equidimensional of dimension d, it follows that for w with ℓ(w) = d we have that
ŜhG,∅,Up(≤ w) is equidimensional of dimension d = ℓ(w). We can now apply Lemma 2.1.16 to deduce
that λ̂ is weakly perfectly smooth of relative dimension 0. We can apply Lemma 2.1.16 again to deduce
the dimension results for ŜhG,∅,Up(≤ w) for arbitrary w, from the dimension results for Mloc

∅,{µ}(≤ w)

from Section 2.2.12.
The morphism ŜhG,∅,Up →

[
Mloc

∅,{µ} /G∅
]

is (by definition) the same as a diagram

˜̂
ShG,∅,Up

ŜhG,∅,Up Mloc
∅,{µ},

s t

where s :
˜̂
ShG,∅,Up → ŜhG,∅,Up is a G∅ = L1G∅-torsor. To show that the local rings of ŜhG,∅,Up(≤ w)

are integral, it suffices to check this after the perfectly smooth (in particular fpqc) cover s. Since

t :
˜̂
ShG,∅,Up(≤ w)→ Mloc

∅,{µ}(≤ w) is weakly perfectly smooth, the result follows from Lemma 2.1.10. □

We now give a corollary of Lemma 4.1.6

Corollary 4.2.4. For w ∈ Adm({µ}), the KR stratum ŜhG,∅,Up(w) is quasi-affine.

Proof. Section 3.1.10 and in particular equation (3.1.3) shows that there is a commutative diagram
where all the horizontal maps are finite

SU ′(G,X) SMpM ′
p
(GV ,HV )⊗OE,(v) SJ ′pJ ′

p
(GVL′HVL′ )⊗OE,(v)

SU (G,X) SMpMp(GV ,HV )⊗OE,(v) SJpJp(GVL ,HVL)⊗OE,(v).

π∅,K

Using Zarhin’s trick as in [50, Remark 2.1.4] or [27, Section 1.3.3]), there is moreover a finite map
SJ ′pJ ′

p
(GVL′HVL′ )→ SQpQp(GV ′′ ,HV ′′), where V ′′ = V ⊕4

L′ ⊕ V ∗,⊕4
L′ and where ψ′′ is given by a certain

explicit matrix. Here Qp corresponds to the self dual lattice V ⊕4
L′,p ⊕ V ∗,⊕4

L′,p and Qp ⊂ GV ′′(Apf ) is
sufficiently small. By Lemma 4.1.6, the pullback E of the (ample) Hodge bundle from the perfection
of SQpQp,Fp

(GV ′′ ,HV ′′) to ŜhG,∅,Up is ample.
By construction, see Lemma 4.1.2, the left square in the following diagram commutes

ŜhG,∅,Up ShGV ,P ′,Mp SQpQp,Fp
(GV ′′ ,HV ′′)perf

ShtG,∅,{µ} ShtGV ,P ′,{µ} ShtGV ′′ ,Qp,{µ} .

The right square moreover commutes because Zarhin’s trick is given by a morphism of Shimura data,
and then we can use [43, Corollary 4.3.2].
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The arguments in the proof of [50, Theorem 3.5.9] now show that the restriction of E to the KR
stratum ŜhG,∅,Up(w) for w ∈ Adm({µ}) is torsion, from which it follows that ŜhG,∅,Up(w) is quasi-
affine. To elaborate, their arguments show that the Hodge bundle on SQpQp,Fp

(GV ′′ ,HV ′′)perf comes
via pullback from a line bundle F on ShtGV ′′ ,Qp,{µ}. They then show that if we pull back F to ShtG,∅,{µ}
and restrict to a KR stratum, that the resulting line bundle is torsion. The same therefore holds for
the restriction of E to ŜhG,∅,Up(w), which implies that ŜhG,∅,Up(w) is quasi-affine. □

4.3. Connected components of closures of KR strata. The goal of this section is to understand,
for w ∈ Adm({µ}), the fibers of

π0(ŜhG,∅,Up(≤ w))→ π0(ShG,K,Up).

Here ŜhG,∅,Up(≤ w) is the closure of the KR stratum ŜhG,∅,Up(w), see equation (4.2.2). We will
eventually reduce this to understanding the fibers of

ŜhG,∅,Up(τ)→ π0(ShG,K,Up),

where τ ∈ Adm({µ}) is the unique element of length zero. To make this reduction, we will show that
each connected component of ŜhG,∅,Up(≤ w) intersects ŜhG,∅,Up(τ). This will require us to assume
that either ShU (G,X) is proper or that GQp is unramified. More generally, we require that Conjecture
4.3.1 below holds. Recall that there are EKOR strata ShG,K,Up{w} for w ∈ KAdm({µ}), see Section
2.3.11 and Section 3.1.7, with closures ShG,K,Up{⪯ w}.
Conjecture 4.3.1. If V is an irreducible component ShG,K,Up{⪯ w} for some w ∈ KAdm({µ}), then
V intersects the unique 0-dimensional EKOR stratum ShG,K,Up{τ}.
Remark 4.3.2. When GK is hyperspecial, then this Conjecture is [53, Proposition 6.20]; the assump-
tion made in the statement of this proposition is proved in [1]. When ShU (G,X) is proper, we will
circumvent the conjecture using Lemma 4.3.4 below. This is where the ’either unramified or proper’
assumption in Theorems 2, 3 and 4 comes from.

4.3.3. We start by proving a lemma.

Lemma 4.3.4. Let Z be a connected component of ŜhG,∅,Up(≤ w). Suppose that there exists a KR
stratum ŜhG,∅,Up(x) such that Z ∩ ŜhG,∅,Up(x) is non-empty and such that ŜhG,∅,Up(≤ x) is perfectly
proper over Spec k. Then Z intersects ŜhG,∅,Up(τ).

Proof. Let ŜhG,∅,Up(x) be as in the statement of the lemma. Then there is an x′ ≤ x of minimal length
such that ŜhG,∅,Up(x′)∩Z ̸= ∅, and it suffices to prove that this length is equal to zero. The minimality
tells us that

ŜhG,∅,Up(x′) ∩ Z = ŜhG,∅,Up(≤x′) ∩ Z,(4.3.1)

since ŜhG,∅,Up(≤ x′) \ ŜhG,∅,Up(x′) is a union of KR strata associated to x′′ ∈ Adm({µ}) of length
strictly smaller than x′. Next, we note that Z ∩ ŜhG,∅,Up(x′) is a union of connected components of
ŜhG,∅,Up(x′), because ŜhG,∅,Up(x′) ⊂ ŜhG,∅,Up(≤ w) and so connected components of ŜhG,∅,Up(x′) are
either disjoint from Z or contained in Z.

Since ŜhG,∅,Up(x′) is quasi-affine by Corollary 4.2.4, we find that ŜhG,∅,Up(x′) ∩ Z is quasi-affine.
Moreover (4.3.1) implies that ŜhG,∅,Up(x′) ∩ Z ⊂ ŜhG,∅,Up(≤ x) is closed, hence perfectly proper over
Spec k. Therefore ŜhG,∅,Up(x′) ∩ Z is perfectly proper and quasi-affine, and thus zero-dimensional.
Since it is a union of connected components of ŜhG,∅,Up(x′), it follows from Corollary 4.2.3 that x′ has
length zero and must therefore be equal to τ . □
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We will deduce the same result from Conjecture 4.3.1 when the Shimura variety is not proper.

Proposition 4.3.5. If Conjecture 4.3.1 holds, then for w ∈ Adm({µ}) every connected component Z
of ŜhG,∅,Up(≤ w) intersects ŜhG,∅,Up(τ).

First, we prove two lemmas.

Lemma 4.3.6. Let Z ⊂ ŜhG,∅,Up(≤ w) be a connected component. If x ∈ Adm({µ}) is of minimal
length with the property that Z ∩ ŜhG,∅,Up(x) ̸= ∅, then x is σ-straight in the sense of [19, Section 1.3].

Proof. Arguing as in the proof of Lemma 4.3.4 above, we see that the intersection Z ∩ ŜhG,∅,Up(x) is
a union of connected components of ŜhG,∅,Up(x). Let V be one of these components, then V is closed
in ŜhG,∅,Up(≤ x) as in the proof of Lemma 4.3.4. Moreover, V is actually a connected component of
ŜhG,∅,Up(≤ x); it is an irreducible component for dimension reasons and thus a connected component
since ŜhG,∅,Up(≤ x) is locally integral (see Corollary 4.2.3).

Let z ∈ V (Fp) with image π(z) ∈ ShG,K,Up(Fp), and consider the uniformisation map

iπ(z) : X(µ, b)K(Fp)→ ShG,K,Up(Fp),
centered at π(z), where b corresponds to π(z). By the proof of [20, Proposition 5.2.2] we can upgrade
this to a morphism of perfect schemes iπ(z) : X(µ, b)K → ShG,K,Up . As in the proof of Theorem 3.3.1,
see the discussion in Section 4.3.8 below, it follows that there is an induced map

iz : X(µ, b)∅ → ŜhG,∅,Up

whose image contains z. Since the uniformisation map is compatible with the KR stratification, this
restricts to a map

X(µ, b)∅(≤ x)→ ŜhG,∅,Up(≤ x)
whose image contains z. This means that there is a connected component Y of X(µ, b)∅(≤ x) that
maps to V ′. Now [19, Theorem 4.1] tells us that there is a σ-straight element x′ ≤ x in Adm({µ})
such that Y ∩X(µ, b)∅(x

′) ̸= ∅. In particular, ŜhG,∅,Up(x′)∩ V ̸= ∅ and so ŜhG,∅,Up(x′)∩Z ̸= ∅. Since
x has been chosen to be minimal with the property that ŜhG,∅,Up(x′) ∩ Z ̸= ∅, we see that x = x′ and
so x is σ-straight. □

Lemma 4.3.7. Let x ∈ Adm({µ}) be σ-straight. Then there is y ∈ KAdm({µ}) such that the natural
map ŜhG,∅,Up(w)→ ShG,K,Up factors via a finite étale map ŜhG,∅,Up(w)→ ShG,K,Up{y} and such that
ℓ(y) = ℓ(w).

Proof. By the proof of [16, Theorem 6.17], there is an element v ∈WK such that y := vxσ(v)−1 lies in
KAdm({µ}) and such that ℓ(y) = ℓ(x). It follows from [16, the discussion prior to Theorem 6.10] that
the image of ShtG,∅,{µ}(x)(Fp) in ShtG,K(Fp) is equal to ShtG,K,{µ}{y}(Fp).14 Since KR strata and
EKOR strata on ŜhG,∅,Up and ShG,K,Up respectively are defined as the inverse images of KR strata and
EKOR strata in ShtG,∅,{µ} and ShtG,K,{µ}, and because these strata are determined by their Fp-points,
we deduce that the image of ŜhG,∅,Up(x)→ ShG,K,Up is equal to ShG,K,Up{y}.

To prove that the induced map is finite étale, we may use diagram (4.0.1) to reduce to checking
finite étale-ness of ShtG,∅,{µ}(w) → ShtG,K,{µ}{y}, and then Lemma 2.4.5 to reduce to checking this
for X(µ, b)∅(w)→ X(µ, b)K{y}. The latter holds because Jb(Qp) acts transitively on X(µ, b)∅(w)(Fp)
by [19, Theorem 5.1], with stabiliser a compact open subgroup, cf. [56, Proposition 3.1.4], and the

14Recall that for y ∈ KAdm({µ}) we use {y} to denote the corresponding EKOR stratum, see Section 2.3.11.
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same holds for X(µ, b)K{w}(Fp). Thus both X(µ, b)∅(w) and X(µ, b)K{y} are isomorphic to infinite
disjoint unions of SpecFp and the map X(µ, b)K(w) → X(µ, b)K{y} is quasi-finite. It is not hard to
see that this implies that X(µ, b)K(w)→ X(µ, b)K{y} is finite étale. □

Proof of Proposition 4.3.5. Let x ∈ Adm({µ}) be of minimal length with the property that Z ∩
ŜhG,∅,Up(x) ̸= ∅, we would like to show that ℓ(x) = 0. Arguing as in the proof of Lemma 4.3.4
above, we see that the intersection Z ∩ ŜhG,∅,Up(x) is a union of connected components of ŜhG,∅,Up(x)

and that Z ∩ ŜhG,∅,Up(x) is closed in ŜhG,∅,Up(≤ x). Let V be one of these components, then V has
dimension ℓ(x) and V is closed inside ŜhG,∅,Up(≤ x). Thus V must be an irreducible component of
ŜhG,∅,Up(≤ x).

By Lemma 4.3.6 we see that x is σ-straight. By Lemma 4.3.7 there exists y ∈ KAdm({µ}) such that
the natural map ŜhG,∅,Up(w)→ ShG,K,Up factors via a finite étale map ŜhG,∅,Up(w)→ ShG,K,Up{y} and
such that ℓ(x) = ℓ(y). We conclude that the image of V in ShG,K,Up{y} is an irreducible component of
ShG,K,Up{y}. Since V is closed in ŜhG,∅,Up(≤ x) and thus in ŜhG,∅,Up , and since the map ŜhG,∅,Up →
ShG,K,Up is perfectly proper, it follows that π(V ) is closed in ShG,K,Up . Therefore π(V ) is closed inside
ShG,K,Up{⪯ y}, the closure of ShG,K,Up{y}, and therefore an irreducible component of ShG,K,Up{⪯ y}.

Conjecture 4.3.1 tells us that π(V ) intersects the zero-dimensional EKOR stratum ShG,K,Up{τ}, and
since π(V ) ⊂ ShG,K,Up{y} it follows that τ = y and so that 0 = ℓ(y) = ℓ(x). It follows that x = τ and
so we are done. □

4.3.8. We will explicitly analyse the basic KR stratum ŜhG,∅,Up(τ), where τ ∈ Adm({µ}) is the
unique element of length zero. Let x ∈ ŜhG,∅(τ)(Fp) with image π(x) ∈ ShG,K,Up(Fp) and choose an
isomorphism Dx ≃ VZp ⊗Zp Z̆p sending sα,0,x to sα⊗1. Let b ∈ G(Q̆p) be the element corresponding to
the Frobenius of Dx under this isomorphism. Let Ix be the algebraic group Iπ(x) introduced in Section
3.1.9 and let

jpx : Ix,Ap
f
→ GAp

f

jx,p : Ix,Qp → Jb

be the maps induced by the choices made above. Then by [20, Proposition 5.2.2], there is an isomor-
phism of perfect schemes (where ShG,K,[b],Up ⊂ ShG,K,Up denotes the Newton stratum associated to
[b])

iπ(x) : Ix(Q)\X(µ, b)K ×G(Apf )/U
p → ShG,K,[b],Up ,

where Ix(Q) acts on G(Apf ) via jpx and on X(µ, b)K via jx,p : I(Q) → Jb(Qp) and then the natural
action of Jb(Qp) on X(µ, b)K . Moreover, it follows from [20, Proposition 5.2.6] that jpx and jx,p are
isomorphisms and that I(R) is compact mod centre.

Consider the Cartesian diagram

(4.3.2)
ŜhG,∅,[b],Up ShtG,∅,µ,[b]

ShG,K,[b],Up ShtG,K,{µ},[b],



42 POL VAN HOFTEN

Applying Lemma 2.4.5 to ShtG,∅,µ,[b] and ShtG,K,{µ},[b] and using ix we can identify (4.3.2) with

ŜhG,∅,[b],Up

[
X(µ,b)∅
Jb(Qp)

]

Ix(Q)\X(µ, b)K ×G(Apf )/U
p

[
X(µ,b)K
Jb(Qp)

]
.

By Lemma 3.3.3 the map (induced by the bottom horizontal map)

X(µ, b)K ×G(Apf )→

[
X(µ, b)K
Jb(Qp)

]
is the natural projection map onto the first factor followed by the natural map to the quotient. As in
the proof of Theorem 3.3.1, it follows that there is an isomorphism

ix : Ix(Q)\X(µ, b)∅ ×G(A
p
f )/U

p → ŜhG,∅,[b],Up

such that the map (coming from the left vertical map in (4.3.2))

Ix(Q)\X(µ, b)∅ ×G(A
p
f )/U

p → Ix(Q)\X(µ, b)K ×G(Apf )/U
p,

is induced by the natural projection X(µ, b)∅ → X(µ, b)K and the identity of G(Apf ).

4.3.9. To analyse the fibers of ŜhG,∅,Up(τ)→ π0(ShG,K,Up), we will first analyse the fibers ofX(µ, b)∅(τ)→
π1(G)

σ
I . Let J sc

b → Jder
b be the simply connected cover of the derived group of Jb.

Lemma 4.3.10. The group J sc
b (Qp) acts transitively on the fibers of

X(µ, b)∅(τ)→ π1(G)
σ
I .

Proof. The element τ is σ-straight and so Jb(Qp) acts transitively on X(µ, b)∅(τ) by Jb(Qp) by [17,
Theorem 4.8]. The stabiliser of a point is a parahoric subgroup Np ⊂ Jb(Qp) by [56, Proposition 3.1.4].
Therefore our map can be identified with the natural map

X(µ, b)∅(τ) =
Jb(Qp)

Np
→ Jb(Qp)

NpJ sc(Qp)
= π1(G)

σ
I ,

using Lemma 3.4.2 and the fact that b is basic in the last step, and the result follows. □

4.3.11. The goal of this subsection is to prove an auxiliary result. Let G and H be connected reductive
groups over Q that are inner forms of each other, and such that they are isomorphic over Apf . Fix an
identification G⊗Apf ≃ H⊗Apf and an inner twisting Ψ : GQp

→ HQp
, which induces an isomorphism

π1(G)σI ≃ π1(H)σI . Recall the notation G(R)+ and G(Q)+ from Section 3.4.

Proposition 4.3.12 (Borovoi). The images of G(Q)+ and H(Q)+ in

G(Apf )
ρ(Gsc(Apf ))

× π1(G)σI

are equal (after applying our fixed identifications).

The following arguments have been reproduced and adapted with permission from Mikhail Borovoi’s
Mathoverflow answer [4]; we will use [3, Section 3]. We consider the crossed module (Gsc → G) and
the hypercohomology

H0
ab(Q,G) := H0(Q,Gsc → G),
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where G is in degree 0; see [3]. The cohomology set H0
ab(Q,G) is naturally an abelian group that does

not change under inner twisting of G. The short exact sequence

1→ (1→ G)→ (Gsc → G)→ (Gsc → 1)→ 1

induces a hypercohomology exact sequence

Gsc(Q)→ G(Q)→ H0
ab(Q,G)→ H1(Q,Gsc),

where
ab0 : G(Q)→ H0

ab(Q,G)

is the abelianisation map. Let Z be the center of G, then by definition,

G(R)+ = Z(R) · ρ(Gsc(R)),
and hence

G(R)+/ρ(Gsc(R)) = ab0(Z(R)) ⊂ ker[H0
ab(R,G)→ H1(R,Gsc)].

We see that the image of G(Q)+ in H0
ab(Q,G) can be identified with the preimage ab0(Z(R)) ⊂

H0
ab(R,G) in ker[H0

ab(Q,G)→ H1(Q,Gsc)] under the natural map

f : ker[H0
ab(Q,G)→ H1(Q,Gsc)]→ ker[H0

ab(R,G)→ H1(R,Gsc)].

Lemma 4.3.13. The preimage of ab0(Z(R)) ⊂ H0
ab(R,G) in ker[H0

ab(Q,G) → H1(Q,Gsc)] under f
coincides with the preimage of ab0(Z(R)) in H0

ab(Q,G).

Proof. Let ξ ∈ H0
ab(Q,G) lie in the preimage of

ab0(Z(R)) ⊂ ker[H0
ab(R,G)→ H1(R,Gsc)].

Then the image of ξ in H1(R,Gsc) is trivial, and therefore, the image of ξ in H1(Q,Gsc) lies in the
kernel of the localisation map

H1(Q,Gsc)→ H1(R,Gsc).

By the Hasse principle for simply connected groups ([44, Theorem 6.6]), this kernel is trivial. Thus the
image of ξ in H1(Q,Gsc) is trivial, and hence ξ lies in the preimage of ab0(Z(R)) in ker[H0

ab(Q,G)→
H1(Q,Gsc)], as required. □

Corollary 4.3.14. The image of the abelianisation map G(Q)+ → H0
ab(Q,G) is the preimage of

ab0(Z(R)) ⊂ H0
ab(R,G) in H0

ab(Q,G).

Proof of Proposition 4.3.12. It is clear from Corollary 4.3.14 and the discussion above that the image
of G(Q)+ → H0

ab(Q,G) is the same for all inner forms. Thus the images of H(Q)+ and G(Q)+ in
H0

ab(Q,G) = H0
ab(Q,H) are equal.

To prove the proposition, we simply note that the following diagram commutes

G(Q)+
ρ(Gsc(Q)) H0

ab(Q,G)

G(Af )
ρ(Gsc(Af ))

∏
v ̸=∞H0

ab(Qv,G).

and that π1(G)σI is a quotient of G(Qp)/ρ(Gsc(Qp)) by Lemma 3.4.2. □

Proposition 4.3.15. Let Σ be a finite set of primes with p ∈ Σ. Then Gsc(AΣ
f ) acts transitively on

the fibers of

ŜhG,∅(τ)→ π0(ShG,K).
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Proof. Let z ∈ ŜhG,∅(τ)(Fp), where ŜhG,∅(τ) := lim←−Up ŜhG,∅,Up(τ), with image x ∈ ShG,K(Fp). Choose
an isomorphism Dx ≃ VZp ⊗Zp Z̆p sending sα,0,x to sα ⊗ 1 and let b ∈ G(Q̆p) be the element corre-
sponding to the Frobenius of Dx under this isomorphism. Then as explained in Section 4.3.8, we get
an isomorphism

iz : lim←−
Up

Ix(Q)\X(µ, b)∅ ×G(A
p
f )/U

p → lim←−
Up

ŜhG,∅,[b],Up =: ŜhG,∅,[b].

By Lemma 3.3.3 this induces an isomorphism

lim←− Ix(Q)\X(µ, b)∅(τ)×G(A
p
f )/U

p → lim←−
Up

ŜhG,∅,Up(τ) = ŜhG,∅(τ).

We also note that the natural map Ix(Q)\X(µ, b)∅(τ)×G(A
p
f )→ lim←−Up Ix(Q)\X(µ, b)∅(τ)×G(A

p
f )/U

p

is a bijection by [37, Lemma 4.20].
Using the base point x ∈ ShG,K(Fp) to trivialise the π(G)-torsor π0(ShG,K), see the beginning of

Section 3.4, we get an isomorphism

π(G)→ π0(ShG,K)

g 7→ g · Zx,
where Zx is the connected component containing x. By the discussion in Section 3.4.1 we may identify

π(G) = G(Q)+\π1(G)σI ×
G(Apf )

ρ(Gsc(Apf ))
.

By Proposition 3.4.5 the map

αx : Ix(Q)\X(µ, b)∅ ×G(A
p
f )→ π0(ShG,K),

induced by ix, satisfies αx(y, gp) = (κ(y), gp) · Zx, where κ(y) ∈ π1(G)σI is the image of y and gp ∈
G(Apf ). Hence our identifications fit in a commutative diagram

(4.3.3)

ŜhG,∅(τ) Ix(Q)\X(µ, b)∅(τ)×G(A
p
f )

π0(ShG,K) G(Q)+/π1(GQp)
σ
I ×

G(Ap
f )

ρ(Gsc(Ap
f ))
,

∼

∼

where the map

X(µ, b)∅(τ)×G(A
p
f )→ π1(GQp)

σ
I ×G(A

p
f )

is the product of the natural map κ of Section 3.4 and the identity map on G(Apf ). By [44, Theorem
7.8], which is a strong approximation result, the group Isc(Q) is dense in (using jx,p and jpx from Section
4.3.8 to make the identification)∏

ℓ∈Σ
Isc(Qℓ) = J sc

b (Qp)
∏

ℓ∈Σ\{p}

Gsc(Qℓ).

Recall that we sometimes write Gsc(Apf ) ⊂ G(A
p
f ) for ρ(Gsc(Apf )) ⊂ G(A

p
f ). Using the discussion above,

we can identify the right vertical map in (4.3.3) with the natural map

Ix(Q)\X(µ, b)∅(τ)

J sc
b (Qp)

×
G(Apf )∏

ℓ∈Σ\{p}G
sc(Qℓ)

→ G(Q)+/

(
π1(GQp)

σ
I ×

G(Apf )
Gsc(Apf )

)
.
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Lemma 4.3.10 tells us that κ induces an isomorphism X(µ,b)∅(τ)
Jsc
b (Qp)

→ π1(GQp)
σ
I and thus we get

Ix(Q)\π1(GQp)
σ
I ×

G(Apf )∏
ℓ∈Σ\{p}G

sc(Qℓ)
→ G(Q)+/

(
π1(GQp)

σ
I ×

G(Apf )
Gsc(Apf )

)
.(4.3.4)

The fibers of the natural map

π1(GQp)
σ
I ×

G(Apf )∏
ℓ∈Σ\{p}G

sc(Qℓ)
→ π1(GQp)

σ
I ×

G(Apf )
Gsc(Apf )

clearly have a transitive action of Gsc(AΣ
f ). To show that the same is true for the fibers of (4.3.4), we

need to show that the images of the two natural maps

Ix(Q), G(Q)+ → π1(GQp)
σ
I ×

G(Apf )
Gsc(Apf )

.(4.3.5)

are equal. Now note that Ix(Q) = Ix(Q)+ because Iadx (R) is compact and thus connected, see [44, Cor.
1 on page 121]. Then the required identification of the images of (4.3.5) is exactly what is proved in
Proposition 4.3.12. □

Proposition 4.3.16. Let Σ be a finite set of primes with p ∈ Σ. If either ShU (G,X) is proper or
Conjecture 4.3.1 holds, then Gsc(AΣ

f ) acts transitively on the fibers of

π0(ŜhG,∅(≤ w))→ π0(ShG,K).

Proof. There is a G(Apf )-equivariant commutative diagram

(4.3.6)
ŜhG,∅(τ) π0(ŜhG,∅(≤ w))

π0(ShG,K).

If Conjecture 4.3.1 holds, then by Proposition 4.3.5 every connected component of ŜhG,∅,Up(≤ w)

intersects ŜhG,∅,Up(τ). If ShU (G,X) is proper, then SU (G,X) is proper by the main result of [36].
Therefore ShG,K,Up is perfectly proper and moreover ŜhG,∅,Up is perfectly proper since ŜhG,∅,Up →
ShG,K,Up is perfectly proper. Now Lemma 4.3.4 tells us that every connected component of ŜhG,∅,Up(≤
w) intersects ŜhG,∅,Up(τ). Thus under the assumptions of the proposition the horizontal arrow in
(4.3.6) is surjective. Indeed, it is a continuous morphism of profinite sets that is a countable inverse
limit of surjective maps between finite sets.

We see that the fibers of the left diagonal map surject onto the fibers of the right diagonal map. Now
Gsc(AΣ

f ) acts transitively on the fibers of the left diagonal map by Proposition 4.3.15, and therefore
also on the fibers of the right diagonal map. □

4.4. Proof of the main theorems.

Theorem 4.4.1. If either ShU (G,X) is proper or Conjecture 4.3.1 holds, then the natural map ι :

ShG,∅,Up → ŜhG,∅,Up is an isomorphism.

Proof. We know that ι is a closed immersion by Proposition 4.1.4, whose source and target are equidi-
mensional of the same dimension by Proposition 4.2.1. To prove that this closed immersion is an
isomorphism, it suffices to show that for each w ∈ Adm({µ}) of maximal length, the closed immersion

ShG,∅,Up(≤ w)→ ŜhG,∅,Up(≤ w)
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is an isomorphism. Now source and target are locally integral by Corollary 4.2.3, and so the source is
a union of connected components of the target. To show that the inclusion

π0(ShG,∅,Up(≤ w))→ π0(ŜhG,∅,Up(≤ w))

is an isomorphism, we will use the G(Apf )-equivariance of the map π0(ShG,∅(≤ w))→ π0(ŜhG,∅(≤ w)).
We know by Corollary 3.4.7 that

ShG,∅,Up(≤ w)→ π0(ShG,K,Up)

is surjective for all Up, and therefore it is enough to show that Gsc(Apf ) acts transitively on the fibers
of ŜhG,∅(≤ w)→ π0(ShG,K). Under our assumptions, this follows from Proposition 4.3.16. □

4.4.2. Proofs of the main theorems. In this section we deduce the main theorems of the introduction.

Proof of Theorem 2. Recall that we assumed in Theorem 2 that π1(G)I is torsion free, which implies
that all parahoric subgroups of G(Qp) are connected by Lemma 2.2.2. Part 1 of Theorem 2 is Theorem
A.4.5.

Part 2 of the theorem for an Iwahori subgroup follows from Theorem 3.3.1 in combination with
Theorem 4.4.1. To apply Theorem 4.4.1 we need to verify that either ShU (G,X) is proper or Conjecture
4.3.1 holds. In the statement of Theorem 2 we are assuming that either ShU (G,X) is proper or that
GQp is unramified. Now we recall that Conjecture 4.3.1 holds if GQp is unramified by [53, Proposition
6.20] and the main result of [1], see Remark 4.3.2. Part 2 of the theorem for an arbitrary parahoric
subgroup follows from the case of an Iwahori subgroup by [55, Proposition 7.8]. □

Proof of Theorem 1. Recall that we assumed in Theorem 2 that π1(G)I is torsion free, which implies
that all parahoric subgroups of G(Qp) are connected by Lemma 2.2.2. Theorem 1 is therefore a direct
consequence of Corollary 3.2.1. □

Proof of Theorem 3. By [55, Theorem 8.1.(ii)], uniformisation of isogeny classes, as proved in Theorem
2, implies that the He–Rapoport axioms hold. □

Proof of Theorem 4. This follows from Theorem 4.5.2 below by specialising to the case that Gad is
Q-simple. Note that Theorem 4.5.2 has the assumption that either ShU (G,X) is proper or Conjecture
4.3.1 holds, which is true if either ShU (G,X) is proper or if GQp is unramified, see the proof of Theorem
2 above. □

4.5. Consequences for irreducible components. In this section we prove a generalisation of The-
orem 4. Before we can state it, we need to introduce some notation. Let Gad =

∏
iGi be the

decomposition of Gad into simple groups over Q and consider the induced maps of Kottwitz sets

B(GQp)→ B(Gad
Qp

)→
∏
i

B(Gi,Qp).

Definition 4.5.1 (Definition 5.3.2 of [30]). An element [b] ∈ B(G) is called Q-non-basic if the image
of [b] in B(Gi,Qp) is non-basic for all i. A Newton stratum ShG,K,[b],Up is called Q-non-basic if [b] is
Q-non-basic.

Recall that K ⊂ S corresponds to a very special parahoric.

Theorem 4.5.2. Let w ∈ KAdm({µ}) such that the EKOR stratum ShG,K,Up{w} intersects a Q-non-
basic Newton stratum. If either ShU (G,X) is proper or Conjecture 4.3.1 holds, then

ShG,K,Up{w} → ShG,K,Up

induces a bijection on π0.
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We start by proving a lemma.

Lemma 4.5.3. For w ∈ KAdm({µ}), viewed as an element of Adm({µ}) via KAdm({µ}) ⊂ Adm({µ}),
the forgetful map ShG,∅,Up(w)→ ShG,K,Up factors through ShG,K,Up{w}, via a surjective map ShG,∅,Up(w)→
ShG,K,Up{w}.

Proof. The factorisation is [50, Theorem 5.4.5.(3)] and the surjectivity is proved there under the as-
sumption that Axiom 4(c) of [16] holds, which is true by Theorem 3. □

Proof of Theorem 4.5.2. We will prove that if w ∈ Adm({µ}) such that ShG,∅,Up(w) intersects a Q-
non-basic Newton stratum, then the natural map π0(ShG,∅,Up(w)) → π0(ShG,K,Up) is a bijection. By
Lemma 4.5.3, this will imply Theorem 4.5.2.

Step 1: We first deal with the case of σ-straight w ∈ Adm({µ}). Then ShG,∅,Up(w) is contained
in a unique Newton stratum ShG,∅,[b],Up , see [50, Theorem 1.3.5], which by assumption is Q-non-basic.
We deduce from Theorem 4.4.1, Corollary 4.2.3 and Proposition 4.3.16 that for any finite set of primes
Σ with p ∈ Σ, the group Gsc(AΣ

f ) acts transitively on the fibers of

π0(ShG,∅(w))→ π0(ShG,K).

By Lemma 4.3.7, there exists y ∈ KAdm({µ}) such that the natural map ŜhG,∅,Up(w) → ShG,K,Up

factors via a finite étale map ŜhG,∅,Up(w) → ShG,K,Up{y}. We want to apply [23, Theorem 3.4.1]
to the G(Apf )-equivariant finite étale cover ShG,∅(w) → ShG,K{y}. Note that [23, Hypothesis 2.3.1]
follows from Theorem 1, see [23, Remark 2.3.3]. Moreover, [23, Hypothesis 3.4.1] of loc. cit. is satisfied
since ShG,K,Up is locally integral because GK is very special, see [25, Corollary 4.6.26]. The assumption
that every connected component of ShG,K,Up{y} intersects a Q-non-basic Newton stratum holds since
ShG,∅,Up{y} is contained in a single Q-non-basic Newton stratum since ShG,∅,Up(w) is.

Therefore the assumptions of [23, Theorem 3.4.1] are satisfied and we conclude that if Σ con-
tains all the primes ℓ where Gad

Qℓ
has a compact factor, then Gsc(AΣ

f ) acts trivially on the fibers of
π0(ShG,∅(w))→ π0(ShG,K). Since it also acts transitively on these fibers by Proposition 4.3.16 and since
the map π0(ShG,∅(w)) → π0(ShG,K) is surjective by Corollary 3.4.7, we deduce that π0(ShG,∅(w)) →
π0(ShG,K) is a bijection.

Step 2: For general w ∈ Adm({µ}) intersecting a Q-non-basic Newton stratum ShG,∅,[b],Up , there is
a σ-straight element w′ ≤ w with ShG,∅,Up(w′)∩ShG,∅,[b],Up non-empty; this follows from [19, Theorem
4.1] as in the proof of Lemma 4.3.6. It follows from our assumptions that every connected component
V of ShG,∅,Up(≤ w) intersects ShG,∅,Up(τ). Thus the intersection V ∩ ShG,∅,Up(≤ w′) is non-empty,
and it is therefore a union of connected components of ShG,∅,Up(≤ w′). Hence V ∩ ShG,∅,Up(≤ w′) is
equidimensional of dimension ℓ(w′) and must therefore intersect ShG,∅,Up(w′). We see that the natural
map ShG,∅,Up(w′)→ ShG,∅,Up(≤ w) induces a surjective map on π0. Consider the commutative diagram

ShG,∅(w
′) π0(ShG,∅(≤ w)

π0(ShG,K).

The right diagonal map is surjective by Corollary 3.4.7, the horizontal map is surjective by the dis-
cussion above and the left diagonal arrow is a bijection by step 1. It follows that π0(ShG,∅(≤ w)) →
π0(ShG,K) is a bijection and since π0(ShG,∅(w))→ π0(ShG,∅(≤ w)) is a bijection by the local integrality
of π0(ShG,∅(≤ w)), see Corollary 4.2.3, we are done. □
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Appendix A. Connected components of affine Deligne–Lusztig varieties with very
special level structure, by Rong Zhou

As explained in the introduction, proving uniformisation of isogeny classes in Shimura varieties of
Hodge type with parahoric level is closely related to the problem of understanding connected compo-
nents of affine Deligne–Lusztig varieties with parahoric level. In this Appendix, we study the connected
components of affine Deligne–Lusztig varieties with very special level structure and prove for instance
that Jb(Qp) acts transitively on these connected components. These results will be used in Section A.4
to prove uniformisation of isogeny classes in Shimura varieties of Hodge type with very special level.

A.1. The main result. We follow the notation of Section 2. Thus G is a reductive group over Qp

and {µ} is a geometric conjugacy class of cocharacters of GQp
. We assume that G is quasi-split, and

we let I be the Iwahori group scheme corresponding to a σ-stable alcove a in the building for G. We
fix G a very special standard parahoric group scheme for G. Then G corresponds to a σ-stable special
point s lying in the closure of a and we write K ⊂ S for the subset of simple affine reflections which
preserve s. The projection W̃ →W0 induces an isomorphism WK

∼=W0.
As explained in [55, §9], we have an identification

WK\W̃/WK
∼= X∗(T )

+
I .

By [16], there exists a reduced root system Σ (the échelonnage root system) such that

Wa
∼=W (Σ)⋉Q∨(Σ),

where W (Σ) (resp. Q∨(Σ)) is the Weyl group (resp. coroot lattice) of Σ. We define a partial order
≼ on X∗(T )

+
I by setting λ ≼ λ′ if λ − λ′ can be written as a sum of positive coroots in Q∨(Σ) with

positive integral coefficients. Then by [35, pp. 210], the Bruhat order on WK\W̃/WK agrees with the
partial order ≼. It follows that for µ ∈ X∗(T )

+
I , we have

Adm(µ)K = {λ ∈ X∗(T )
+
I |λ ≼ µ}.

Let b ∈ G(Q̆p) such that [b] ∈ B(G, {µ}). We have the affine Deligne–Lusztig variety X(µ, b)K
defined in Section 2.4.2. We also set

Adm(µ)K :=WKAdm(µ)WK ⊂ W̃
and define

X(µ, b)K :=
⋃

w∈Adm(µ)K

Xw(b),
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which is a locally closed subscheme of the Witt vector affine flag variety GrI . Then there is a natural
map

(A.1.1) X(µ, b)K → X(µ, b)K

which is equivariant for the action of the σ-centraliser group Jb(Qp). In fact, (A.1.1) is a fibration with
connected fibers and hence induces a Jb(Qp)-equivariant bijection

(A.1.2) π0(X(µ, b)K)
∼−→ π0(X(µ, b)K).

A.1.1. Recall from e.g [28, Section 1.1.2] that associated to [b] ∈ B(G) there is a Newton cocharacter
ν[b]. Let M denote the centraliser of ν[b] and we fix a representative b of [b] such that ν[b] = ν[b]. The
existence of such a representative follows from the same argument as in [6, Lemma 2.5.2] which also
shows that b ∈M(Q̆p). Then b is a basic element of M , in other words ν[b] is central in M .

We use a subscript M to denote the corresponding objects for M . Thus W̃M (resp. Wa,M ) denotes
the Iwahori–Weyl group (resp. affine Weyl group) for M . The intersection M(Q̆p) ∩ G(Z̆p) arises as
the Z̆p-points of a very special parahoric group schemeM for M , which is standard for the alcove aM
for M determined by a. We write IM for the Iwahori group scheme of M determined by aM and we
let KM ⊂ SM denote the subset of simple affine reflections for M corresponding to M. We let ΣM
denote the échelonnage root system for M so that

Wa,M
∼=W (ΣM )⋉Q∨(ΣM ).

For x ∈ π1(M)I , we write τx ∈ ΩM for the corresponding length 0 element, and we write τx = tµxwx
for a unique wx ∈WK . Then the map x 7→ µx induces a bijection

(A.1.3) π1(M)I ∼= {λ ∈ X∗(T )I |λ is M -dominant and M -minuscule},

here M -minuscule means minuscule with respect to the root system ΣM . We define the set

Iµ,b,M := {x ∈ π1(M)I |κM (b) = x, µx ≼ µ}.

Via the bijection (A.1.3), we also consider Iµ,b,M as a subset of the set of M -minuscule and M -
dominant elements in X∗(T )I . For each λ ∈ Iµ,b,M , we have the affine Deligne–Lusztig variety
XM (λ, b)KM

for the group M . It is a closed subscheme of the partial affine flag variety for M with
respect to the parahoric subgroupM, and its Fp-points are given by

{m ∈M(Q̆p)/M(Z̆p)|m−1bσ(m) ∈M(Z̆p)ṫλ
′M(Z̆p), λ′ ≼M λ}.

It is equipped with a natural map

(A.1.4) XM (λ, b)KM
→ X(µ, b)K

which is equivariant for the action of the σ-centraliser group Jb(Qp).

A.1.2. Our main theorem on the connected components of affine Deligne–Lusztig varieties is the
following.

Theorem A.1.3. Jb(Qp) acts transitively on π0(X(µ, b)K). In particular, for any λ ∈ Iµ,b,M the map
(A.1.4) induces a surjection

π0(X
M (λ, b)KM

)→ π0(X(µ, b)K).

Remark A.1.4. The theorem is stated for G a quasi-split reductive group over Qp. However, the result
makes sense for general quasi-split groups over any local field F and can be proved in exactly the same
way.
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A.1.5. We follow the strategy of [6] and [39] where this result was proved for unramified groups G.
The result follows from the following two propositions.

Proposition A.1.6. The natural map∐
λ∈Iµ,b,M

XM (λ, b)KM
→ X(µ, b)K

induces a surjection ∐
λ∈Iµ,b,M

π0(X
M (λ, b)KM

)→ π0(X(µ, b)K).

Proposition A.1.7. Let λ ∈ Iµ,b,M . The image of the natural map

π0(X
M (λ, b)KM

)→ π0(X(µ, b)K)

does not depend on the choice of λ ∈ Iµ,b,M .

Proof of Theorem A.1.3. Fix λ ∈ Iµ,b,M . By Proposition A.1.6 and Proposition A.1.7, the map

π0(X
M (λ, b)KM

)→ π0(X(µ, b)K)

is surjective. By [19, Theorem 4.1 and Theorem 5.1], Jb(Qp) acts transitively on π0(XM (λ, b)KM
), and

hence on π0(X(µ, b)K).
□

A.1.8. We now proceed to prove the two propositions. Note that by a standard reduction (see [19,
Section 6]), it suffices to prove the propositions when G is adjoint and Qp-simple. We may and do
assume this from now on.

A.2. Proof of Proposition A.1.6.

A.2.1. In the case of unramified groups, Proposition A.1.6 is [6, Proposition 3.4.1]. Here we prove
the general case using a different method based on the Deligne–Lusztig reduction method for affine
Deligne–Lusztig varieties in the affine flag variety.

We begin with some preliminaries regarding σ-conjugacy classes in Iwahori–Weyl groups. For any
element w ∈ W̃ , we let n be a sufficiently divisible integer such that σn acts trivially on W̃ and
wσ(w) . . . σn−1(w) = tλ for some λ ∈ X∗(T )I . We set νw := tλ

n ∈ X∗(T )I,Q and νw ∈ X∗(T )
+
I,Q for

the dominant representative of νw. We let κ(w) ∈ π1(G)Γ denote the image of w under the projection
W̃ → π1(G)I → π1(G)Γ. We write B(W̃ , σ) for the set of σ-conjugacy classes in W̃ . Then w 7→ [ẇ]

induces a well-defined map Ψ : B(W̃ , σ)→ B(G) and we have a commutative diagram (see [17, Section
3.3, Theorem 3.5]):

B(W̃ , s̃)
Ψ //

(ν,κ) ((

B(G)

(ν,κ)vv

(X∗(T )
+
I,Q)

σ × π1(G)Γ .
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A.2.2. We will need the following lemma. We write J ⊂ K ∼= S0 for the subset corresponding to M .
Recall that an element w ∈ W̃ is said to be σ-straight if

nℓ(w) = ℓ(wσ(w) . . . σn−1(w))

for all n.

Lemma A.2.3. Let w ∈ W̃ be σ-straight such that ẇ ∈ [b]; in particular νb = νw. Let u ∈ JW0 such
that u(νw) = νb and set w♯ := uwσ(u)−1. Then w♯ ∈ ΩM .

Proof. It suffices to show that w♯ ∈WM and

w♯IM (Z̆p)w−1
♯ = IM (Z̆p).

The first statement follows since w♯(νw) = νw. By [19, Theorem 5.2], the element w is (νw, σ)-
fundamental. Thus

wσ(IMνw
(Z̆p))w−1 = IMνw

(Z̆p)
where Mνw is the centraliser of νw and IMνw

(Z̆p) := I(Z̆p) ∩ Mνw(Q̆p). Since u ∈ JW0, we have
uIMνw

(Z̆p)u−1 = IM (Z̆p). It follows that

w♯IM (Z̆p)w−1
♯ = w♯σ(IM (Z̆p))w−1

♯

= uwσ(IMνw
(Z̆p))w−1u−1

= IM (Z̆p).
as desired. □

Proof of Proposition A.1.6. By (A.1.2), it suffices to show the natural map∐
λ∈Iµ,b,M

XM (λ, b)KM → X(µ, b)K

induces a surjection ∐
λ∈Iµ,b,M

π0(X
M (λ, b)KM )→ π0(X(µ, b)K).

Let Y be a connected component of X(µ, b)K . Then by [19, Theorem 4.1], there exists a σ-straight
element w ∈ Adm(µ)K , such that Y ∩Xw(b) ̸= ∅. Let w♯ denote the element constructed in Lemma
A.2.3 and u ∈ JW0 such that uwσ(u) = w♯. Then we claim that [b]M = [ẇ♯]M ∈ B(M). Indeed, we
have νw♯

= νw = νb. Therefore the image of [b]M and [ẇ♯]M in π1(M)I coincide up to torsion. On
the other hand, the images of [b]M and [ẇ♯]M in π1(G)I coincide and ker(π1(M)I → π1(G)I) is torsion
free. It follows that κM ([b]M ) = κM ([ẇ♯]M ) and hence [b]M = [ẇ♯]M . Thus we may replace b by ẇ♯.

We will show that Y ∩XM
w♯
(ẇ♯) ̸= ∅. Since w♯ ∈ AdmM (λ)KM , where λ ∈ Iµ,b,M corresponds to the

image of w♯ in π1(M)I , it follows that Xw♯
(ẇ♯) ⊂ XM (λ, ẇ♯)

KM ; this implies the proposition.
For any affine root α, we let U−αi denote the affine root subgroup corresponding to −αi over Z̆p.

By [5, Section 4.3.2, 4.3.5 and 4.3.7], U−αi is the group scheme associated to a finite free Z̆p-module.
For any ϵ > 0, we let U−αi+ϵ(Z̆p) be the subgroup of U−αi(Z̆p) corresponding to the affine function
−α + ϵ. Similarly, we write U−αi+(Z̆p) for the union of U−αi+ϵ(Z̆p) over all ϵ > 0. As the notation
suggests, these arise as the Z̆p-points of group schemes U−αi+ϵ and U−αi+ϵ over Z̆p, and the quotient
U−αi(Z̆p)/U−αi+(Z̆p) is a 1-dimensional vector space over k. We choose a group scheme homomorphism

f : Ga → U−α
which lifts the map k ∼= U−αi(Z̆p)/U−αi+ϵ(Z̆p).
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For R a perfect k-algebra and a ∈ R, the map

hα : R→ U−α(W (R))

a 7→ f([a])

where [a] ∈W (R) is the Teichmüller lift of a, induces a k-scheme morphism

hα : A1,perf → L+U−α,
where A1,perf denotes the perfection of A1 over k. The induced morphism A1,perf → GrI extends to a
morphism P1,perf → GrI also denoted hα. Then we have

(A.2.1) hα(∞) = ṡαI ∈ GrI .

Let g0I ∈ Y ∩ Xw(ẇ♯) with g0 ∈ G(Q̆p). By [19, Theorem. 5.2], we may choose g0 such that
g−1
0 ẇ♯g0 = ẇ. Let sn . . . s1 be a reduced word decomposition for u (note that si ∈ K) and we write ui

for the element s1 . . . si ∈ W̃ and u0 = e. We write gi ∈ G(Q̆p)for the element g0u̇i. We will prove by
induction that giI ∈ Y for i = 0, 1, . . . , n; clearly this is true for i = 0.

Assume gi ∈ Y and we let αi+1 denote the positive affine root corresponding to si+1. We consider
the map

g := gihαi+1 : P1,perf → GrI .

Since U−αi+1 ⊂ I ṡi+1I, for any s ∈ A1,perf(k) we have

g(s)−1ẇ♯σ(g(s)) = hαi+1(s)
−1g−1

i ẇ♯σ(gi)σ(hαi+1(s))

∈ I ṡαi+1IẇiIσ(ṡαi+1)I

⊂
⋃
x∈A
IẋI

where wi := u−1
i w♯σ(ui) ∈ Adm(µ)K and A ⊂ W̃ is the subset

A = {wi, si+1wi, wiσ(si+1), si+1wiσ(si+1)}.
Since Adm(µ)K is closed under left and right multiplication by WK , we have A ⊂ Adm(µ)K , and
hence

g(s)−1ẇ♯σ(g(s)) ∈
⋃

v∈Adm(µ)K

I v̇I

for any s ∈ P1,perf(k). Moreover we have g(0) = giI and g(∞) = gi+1I, where the latter equality
follows from (A.2.1). Thus the image of g is a curve in X(µ, b)K which connects giI and gi+1I and
hence gi+1I ∈ Y . Then by definition gn, gnI lies in the image of XM

w♯
(ẇ♯) as desired. □

A.3. Proof of Proposition A.1.7.

A.3.1. When G is unramified, this proposition follows from the proof of [6, Proposition 4.1.12] when µ
is minuscule; the general case is proved in [39, Proposition 5.1]. The main input is the construction of
explicit curves in X(µ, b)K which connect points in XM (λ, b)KM

and XM (λ′, b)KM
for λ ̸= λ′ ∈ Iµ,b,M .

The construction of these curves relied on certain combinatorial results concerning the root system for
G. The exact same method of proof works in our setting; however, there are a few subtleties which we
now explain.

First, the explicit curves were constructed in [6] and [39] using root subgroups of GQ̆p
which are all

isomorphic to Ga when the group is unramified. In general, the root subgroups are more complicated
and thus one needs to be more careful. However, we are still able to give a uniform construction of the
curves that we need.
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Secondly, we need to generalise the combinatorial results to general quasi-split groups G. It turns
out there is a systematic way to deduce these combinatorial results for quasi-split G from the case of
unramified groups which we now explain.

A.3.2. Recall we have assumed G is adjoint and simple. As in [17, §7.2], see [56, Proof of Theorem
A.3.1] for an explicit construction, there is an unramified adjoint group H over Qp such that the pair
(W ′, σ′) consisting of the Iwahori–Weyl group for G′ and the action of Frobenius is identified with the
pair (W,σ). Moreover the échelonnage root system Σ is identified with the absolute root system Σ′ for
G′, and we have an isomorphism

π1(G)I ∼= π1(G
′)

X∗(T )I ∼= X∗(T
′),

where T ′ is a suitable maximal Q̆p-split torus of G′.
We use a superscript ′ to denote the corresponding objects for G′. Then G determines a hyperspecial

subgroup G′ for G′ and we write K ′ ⊂ S′ for the corresponding subset of simple reflections. Then M
determines a Levi subgroup M ′ of G′ and hence a subset J ′ ⊂ K ′. It follows that the combinatorial
data

(A.3.1) (Σ, X∗(T )I , σ, J, µ, κM (b))

is identified with the corresponding data for G′. Thus any result which only depends on the data
((A.3.1)), can be reduced to the case of unramified groups. The combinatorial results that we need
are already proved in the case of unramified groups in [39] and [6]. We therefore take the convention
that whenever we need certain results which depend on the data ((A.3.1)), we will refer to the relevant
result in [6] or [39].

A.3.3. We now proceed with the proof of Proposition A.1.7. Let x, x′ ∈ π1(M)I . We write x
(α,r)→ x′

for some α ∈ Σ and r ∈ N if x− x′ = α∨ − σr(α∨) and

µx, µx+α∨ , µx−σr(α∨), µx′ ≼ µ.

We write x
(α,r)
↣ x′ if x

(α,r)→ x′ and neither

x
(α,i)→ x+ α∨ − σi(α∨)

(σi(α),r−i)→ x′

nor

x
(σi(α),r−i)→ x+ σi(α∨)− σr(α∨)

(α,i)→ x′

for any i ∈ [1, r − 1].
We let

⟨ , ⟩ : (Q(Σ)⊗Z R)× (X∗(T )I ⊗Z R)→ R
be the natural pairing, where Q(Σ) is the root lattice of Σ. For any element α ∈ Σ, we write Oα for
the σ-orbit of α. We let h denote the number of connected components of the Dynkin diagram of G
over Q̆p; then we have #Oα ∈ {h, 2h, 3h}.

Lemma A.3.4 ([39, Lemma 7.7]). Let x ̸= x′ ∈ Iµ,b,M . Then there exists xj ∈ π1(M)I , αj ∈ Σ−ΣM
and rj ∈ N for j ∈ [0,m− 1] such that

(1) α∨
j is M -dominant and M -minuscule.

(2) rj ∈ [1, h] if #Oαj ∈ {h, 2h} and rj ∈ [1, 2h− 1] if #Oαj = 3h.

(3) x0 = x, xm = x′ and we have xj
(αj ,rj)→ xj+1 for j ∈ [0,m− 1].
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Proof. This follows from [39, Lemma 7.7] by discussion in Section A.3.2 above. Note that in loc. cit.,
the result is stated for M a Levi subgroup such that b is superbasic in M . However, one checks that the
same proof works for any M as long as Iµ,b,M contains a weakly dominant element. Here λ ∈ X∗(T )I
is weakly dominant if ⟨α, λ⟩ ≥ −1 for any positive root α ∈ Σ. But as in [39, Lemma 4.1], any element
λ ∈ Iµ,b,M is weakly dominant, so the result applies to our M .

□

A.3.5. We now construct certain curves inside LG which we will use to connect points in X(µ, b)K .
Let α ∈ Σ be a root. Then α determines a relative root α̃ of G over Q̆p which we always take to be
the short root. We let Gα denote the simply connected cover of the (semi-simple) group generated by
Uα̃ and U−α̃ and we write

iα : Gα → G

for the natural map. We let Gα denote the very special parahoric of Gα such that G(Z̆p) := Gα(Q̆p) ∩
i−1
α (G(Z̆p)).

If α̃ is not divisible, then we have an isomorphism

Gα ∼= ResK̆/Q̆p
SL2,

where K̆/Q̆p is a finite extension. Then up to conjugacy Gα is identified with the very special parahoric
SL2(OK̆) ⊂ Gα(Q̆p) and there is an isomorphism

fα̃ : ResK̆/Q̆p
Ga

∼−→ Uα̃.

If α̃ is divisible, then there is an isomorphism

Gα ∼= ResK̆/Q̆p
SU3,

where SU3 is the special unitary group over K̆ associated to a quadratic extension K̆ ′/K̆.

A.3.6. We recall the presentation of the K̆-group SU3 in [52, Example 1.15].
We let τ ∈ Gal(K̆ ′/K̆) denote the nontrivial element, and we consider the Hermitian form on K̆ ′3

given by
⟨(x−1, x0, x1), (y−1, y0, y1)⟩ = τ(x−1)y1 + τ(x0)y0 + τ(x1)y−1.

The group SU3 is the special unitary group attached to this form. For i = −1, 1 and c, d ∈ K̆ ′ such
that τ(c)c+ d+ τ(d) = 0, we define

ui(c, d) = I3 + (grs)

where I3 is the identity matrix and (grs) is the matrix with entries g−i,0 = −τ(c), g0,i = c, g−i,i = d
and grs = 0 otherwise. The root subgroups are then given by

U±α̃(K̆) = {u±1(c, d)|c, d ∈ K̆ ′, τ(c)c+ τ(d) + d = 0}

U±2α̃(K̆) = {u±1(0, d)|c, d ∈ K̆ ′, τ(d) + d = 0}.
We consider the very special parahoric Gα(F̆ ) ∩ GL3(OK̆′) of Gα(F̆ ); we call this the standard

parahoric. Let π ∈ K̆ ′ be a uniformiser such that τ(π) = −π and let s ∈ GL3(K̆
′) denote the element

diag(π, 1, 1). Then the subgroup of Gα(Q̆p) defined by

Gα(Q̆p) ∩ sĞL3(OK̆′)s
−1

is a very special parahoric subgroup of Gα(Q̆p), which we shall call the non-standard parahoric. Up to
conjugacy, these are the only very special parahorics of SU3.
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A.3.7. For α ∈ Σ, we define a map uα : A1,perf → LUα̃ ⊂ LG as follows. Let R be a perfect ring of
characteristic p and a ∈ R will denote an arbitrary element. We consider the following three separate
cases.

(1) Gα ∼= ResK̆/Q̆p
SL2 and Gα(Z̆p) = SL2(OK̆).

We define uα to be the map induced by

a 7→ iα(fα̃(π
−1 · [a])).

(2) Gα ∼= ResK̆/Q̆p
SU3 and Gα is the standard parahoric subgroup.

We define uα to be the map

a 7→ iα(u1(0, π
−1 · [a])).

(3) Gα ∼= ResK̆/Q̆p
SU3 and Gα is the non-standard parahoric subgroup.

We define uα to be the map

a 7→ iα(u1([a],
[a]2

2
)).

A.3.8. A calculation using the presentations of SL2 or SU3 above gives the following lemma (cf.
[39, Lemma 7.14]).

Lemma A.3.9. (1) Let λ, δ ∈ X∗(T )I and α, β ∈ Σ such that Q(Σ) ∩ (Zα + Zβ) is of type A2,
A1 ×A1 or A1 and such that

δ, δ + α∨, δ − β∨, δ + α∨ − β∨ ≼ λ.

Then for all y, z ∈ k, we have

uα(z)ṫ
δuβ(y) ∈

⋃
λ′≼λ

L+G ṫλ′L+G.

(2) Let α, β ∈ Σ and λ ∈ X∗(T )I such that ⟨α, β∨⟩ = ⟨β, α∨⟩ = −1 and ⟨α, λ⟩ ≥ 2. Then for any
y, z ∈ k we have

uβ(z)(ṫ
λuα(y)ṫ

−λ)uβ(−z) ∈ L+G

A.3.10. The following lemma is the analogue of [39, Lemma 7.8].

Lemma A.3.11. Let x, x′ ∈ π1(M)I , α ∈ Σ− ΣM and r ∈ N such that
(1) α∨ is M -dominant and M -minuscule.
(2) r ∈ [1, h] if #Oα ∈ {h, 2h} and r ∈ [1, 2h− 1] if #Oα = 3h.

(3) x
(α,r)→ x′.

Then for any P ∈ XM (µx, b)KM
, there exists P ′ ∈ XM (µx′ , b)KM

such that P and P ′ lie in the same
connected component of X(µ, b)K and we have

κM (P )− κM (P ′) =
r−1∑
i=0

σi(α∨) ∈ π1(M)I .

Proof. As in [39, Lemma 7.5], we may assume that x
(α,r)
↣ x′. Moreover, arguing as in [39, Lemma 7.15],

it suffices to show that there exists P ∈ XM (µx, b)KM
and P ′ ∈ XM (µx′ , b)KM

such that P and P ′ lie
in the same connected component of X(µ, b)K and we have κM (P )−κM (P ′) =

∑r−1
i=0 σ

i(α∨) ∈ π1(M)I .

Let bx = ṫµxẇx; then bx is basic in M and since κM (b) = κM (bx) ∈ π1(M)Γ, there exists gx ∈M(F̆ )
such that g−1

x bσ(gx) = bx. We define P := gxL
+M so that P ∈ XM (µx, b)KM

.
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We first consider the case r ∈ [1, h]. For an element g ∈ LG, we write bxσg for the element bxσ(g)b−1
x .

We define a map u : A1,perf → GrG given by

u(z) = gxuα(z)
bxσuα(z) . . .

(bxσ)r−1
uα(z)L

+G

Then by ind-projectivity of GrG , u extends to a map g : P1,perf → GrG . As in [39, Lemma 7.8], for any
z ∈ k we have

g(z)−1bσ(g(z)) ∈ L+Guα(−z)bxσ (bxσ)r−1
uα(z)L

+G
= L+Guα(−z)ṫµxuwxσr(α)(cσ

r(z))L+G

for some c ∈ k×. Here we use [39, Corollary 7.12], which shows that wxσi(α) = σi(α) and ⟨σi(α), µx⟩ =
0 for i ∈ [1, r − 1]. By [6, Lemma 4.4.5], we have

µx + α∨, µx − wx(σr(α∨)), µx + α∨ − wx(σr(α∨)) ≼ µ.

Thus by Lemma A.3.9 (1), we have

g(z)−1bσ(g(z)) ∈
⋃
µ′≼µ

L+G ṫµ′L+G

and hence g factors through X(µ, b)K . Moreover one computes that

P ′ := g(∞) = gxṫ
−

∑r−1
i=0 σ

i(α∨)L+G,

which lies in the image of XM (µx′ , b)KM
.

We now consider the case r ∈ [h+1, 2h−1]. In this case, #Oα = 3h and each connected component
of the Dynkin diagram of G over Q̆p is of type D4. Then either J = ∅ or J = Oβ where β is the unique
root in Σ with σh(β) and such that β, α lie in the same connected component of Σ. We consider the
following two cases.

Case (i): Either ⟨β, µx⟩ = 0 or ⟨β, α∨⟩ = 0. Then, as in [39, Lemma 7.15, Case 2.2], we have
⟨σj(α), µx⟩ = 0 and wx(σj(α)) = σj(α) for j ∈ [1, r − 1]. Then we may define u : A1,perf → GrG by

u(z) = gxuα(z)
bxσuα(z) . . .

(bxσ)r−1
uα(z)L

+G

as above. Then u extends to g : P1,perf → GrG and the same computation shows that g is a curve
connecting P = g(0) ∈ XM (µx, b) and P ′ := g(∞) = gxṫ

−
∑r−1

i=0 σ
i(α∨)L+G ∈ XM (µx′ , b).

Case (ii): ⟨β, α∨⟩ = −1 and ⟨β, µx⟩ = 1. Then by [39, Lemma 7.15, Case 2], upon switching the
roles of x and x′ if necessary, we may assume that

⟨σr(β), µx⟩ = ⟨σr−h(α), µx⟩ = ⟨σh(α), µx⟩ = 0.

We define u : A1,perf → GrG by

u(z) = gx
(bxσ)r−1

uα(z)
(bxσ)r−2

uα(z) . . . uα(z)L
+G

Then u extends to g : P1,perf → GrG and we have

g(z)−1bσ(g(z)) ∈ L+Guσr−h(α)(−c2z)(ṫλuσr(α)+σr(β)(c1z)ṫ
−λ)uσr−h(α)(c2z)uα(−z)bxL+G

where λ ∈ X∗(T )I satisfies ⟨σr(α) + σr(β), λ⟩ ≥ 2. By Lemma A.3.9 (1) we have

uα(−z)bx ∈
⋃
µ′≼µ

L+G ṫµ′L+G

and by Lemma A.3.9 (2) we have

uσr−h(α)(−c2z)(ṫλuσr(α)+σr(β)(c1z)ṫ
−λ)uσr−h(α)(c2z).
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It follows that
g(z)−1bσ(g(z)) ∈

⋃
µ′≼µ

L+G ṫµ′L+G

and hence g factors through X(µ, b)K . A similar calculation to the above shows that g is a curve
connecting P = g(0) ∈ XM (µx, b) and P ′ := g(∞) ∈ XM (µx′ , b) with κM (P )−κM (P ′) =

∑r−1
i=0 σ

i(α∨).
□

Proof of Proposition A.1.7. This follows by combining Lemma A.3.4 and Lemma A.3.11. □

A.4. Uniformisation in the case of very special level structure.

A.4.1. We will use Theorem A.1.3 to give a description of the isogeny classes in SK(G,X). We assume
that p > 2, p ∤ |π1(Gder)| and that GQp is quasi-split and splits over a tamely ramified extension of
Qp. We now follow the notation in Section 3.1, so (G,X) is a Shimura datum of Hodge type. We let
U = UpUp where Up ⊂ G(Apf ) is a compact open subgroup and Up is a very special connected parahoric
subgroup of G(Qp); we write G for the corresponding parahoric group scheme.

A.4.2. Recall that for x ∈ ShG,K,Up(Fp) there is an attached abelian variety Ax with contravariant
Dieudonné module Dx equipped with tensors sα,0,x. Moreover for all ℓ ̸= p the ℓ-adic Tate module
TℓAx is equipped with tensors sα,ℓ,x ∈ TℓA⊗

x . By [55, Section 5.6], there is an isomorphism

VZ(p) ⊗Z(p)
Z̆p ∼= Dx,

taking sα to sα,0,x. Under this identification, the Frobenius on Dx is of the form φ = bσ for some
b ∈ G(Q̆p); then b is well-defined up to σ-conjugation by GK(Z̆p).

We let µ′ ∈ X∗(T )
+
I denote the image of a dominant representative of the conjugacy class {µ−1

h },
and we define µ = σ(µ′) as in Section 3.1.6. Then by the argument in [55, Section 5.6], we have

b ∈ GK(Z̆p)ẇGK(Z̆p)

for some w ∈ Adm(µ)K ; it follows that 1 ∈ X(µ, b)K(Fp). As in [55, Section 6.7], there is a natural
map

i′x : X(µ, b)K(Fp)→ SUV
(GV ,HV )(Fp)

defined using Dieudonné theory, which sends 1 to the image of x under ShG,K,Up(Fp) = SU (G,X)(Fp)→
SUV

(GV ,HV )(Fp).
Let r be the residue degree of the extension Ev/Qp. Then X(µ, b)K is equipped with an action Φ

given by Φ(g) = (bσ)r(g).

Proposition A.4.3 (cf. [55, Proposition 6.5]). Suppose Up is a very special connected15 parahoric
subgroup of G(Qp). Then there exists a unique map

ix : X(µ, b)K(Fp)→ SU (G,X)(Fp)

lifting i′x such that sα,0,ix(g) = sα,0,x and Φ ◦ ix = ix ◦ Φ, where Φ acts on SU (G,X)(Fp) via the
geometric r-Frobenius.

Proof. For notational simplicity, we write X(µ, b)K for X(µ, b)K(Fp). The uniqueness and compatibil-
ity with Φ is proved in the same way as [55, Proposition 6.5]. We may thus define X(µ, b)◦K ⊂ X(µ, b)K
as the maximal subset which admits such a lifting. We therefore need to show that X(µ, b)◦K =
X(µ, b)K . To do this, we follow the strategy of [55, Proposition 6.5].

15See Section 2.2.1 for the definition of connected parahoric.
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Arguing as in [55, Lemma 6.10], we have that X(µ, b)◦K is (the set of Fp-points of) a union of
connected components. Note that the key input [55, Proposition 6.9] needed for this can be proved
verbatim in our setting.

It therefore suffices to show that the map

X(µ, b)◦K → π0(X(µ, b)K)

is a surjection. Let M ⊂ GQp be the standard Levi subgroup given by the centraliser of the Newton
cocharacter νb. By Theorem A.1.3, there exists λ ∈ Iµ,b,M and an element

g ∈ X(µ, b)◦K ∩XM (λ, b)M .

Upon replacing x by ix(g) and using the diagram [55, Equation (6.7)], we may assume b ∈ M(Q̆p).
Since b is basic in M and using [19, Theorem 4.1], we may further assume that b = τ̇λ where τλ ∈ ΩM
corresponds to κM (b) ∈ π1(M)I .

Arguing as in [55, Lemma 6.11], we find that [55, Assumption 5.12] is satisfied, in other words, the
Hodge filtration on Dx ⊗ Fp lifts to a filtration on Dx ⊗ OK for some K/Q̆p finite which is induced
by an M -valued cocharacter µy. We may therefore let G̃ /OK̆′ be an (M,µy)-adapted lifting of G
(cf. [55, Definition 4.6]) which corresponds to a point x̃ ∈ SU (G,X)(OK̆′). The construction in
[55, Proposition 6.5] gives us a map

ι :M(Qp)/M(Zp)→ XM (λ, b)KM
, g 7→ g0

which induces a surjection
M(Qp)/M(Zp)→ π0(X

M (λ, b)KM
)

by [55, Proposition 5.19]. Moreover, the image of ι lands in X(µ, b)◦K . Therefore by Theorem A.1.3,
X(µ, b)◦K intersects every connected component of XM (λ, b)KM

, and hence X(µ, b)◦K → π0(X(µ, b)K)
is a surjection as desired.

□

A.4.4. Proposition A.4.3 implies that [55, Assumption 6.17] is satisfied, hence we obtain Theorem
A.4.5 below.

Theorem A.4.5. Let p > 2 and (G,X) a Shimura datum of Hodge type with GQp tamely ramified and
quasi split. We assume that p ∤ |π1(Gder)| and that Up is a very special connected parahoric subgroup
of G(Qp).

(1) Let x ∈ SUp(G,X)(Fp) and b ∈ G(Q̆p) the associated element. Then there is a G(Apf )-
equivariant bijection (where Ix ⊂ SUp(G,X)(Fp) is the isogeny class of x)

Ix(Q)\X(µ, b)K(Fp)×G(Apf )→ Ix.

(2) Each isogeny class of SUp(G,X)(Fp) contains a point x which is the reduction of a special point
on ShUp(G,X). This confirms [28, Conjecture 1].

References

[1] Fabrizio Andreatta, On two mod p period maps: Ekedahl–Oort and fine Deligne–Lusztig stratifications, arXiv e-prints
(March 2021), 2103.12361.

[2] Bhargav Bhatt and Peter Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math. 209 (2017),
no. 2, 329–423.

[3] Mikhail Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626,
viii+50.

[4] , Quotienting G(Q)+ by Gsc(Q) and inner forms, 2020. https://mathoverflow.net/q/355287 (version: 2020-
03-20).

https://mathoverflow.net/q/355287


MOD p POINTS ON SHIMURA VARIETIES OF PARAHORIC LEVEL 59

[5] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle
valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376.

[6] Miaofen Chen, Mark Kisin, and Eva Viehmann, Connected components of affine Deligne-Lusztig varieties in mixed
characteristic, Compos. Math. 151 (2015), no. 9, 1697–1762.

[7] Pierre Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques,
Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis,
Ore., 1977), Part 2, 1979, pp. 247–289.

[8] Torsten Ekedahl and Gerard van der Geer, Cycle classes of the E-O stratification on the moduli of abelian varieties,
Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, 2009, pp. 567–636.

[9] Laurent Fargues and Peter Scholze, Geometrization of the local Langlands correspondence, arXiv e-prints (February
2021), 2102.13459.

[10] Ian Gleason, Dong Gyu Lim, and Yujie Xu, The connected components of affine Deligne–Lusztig varieties, arXiv
e-prints (August 2022), 2208.07195.

[11] Ian Gleason and João Lourenço, On the connectedness of p-adic period domains, arXiv e-prints (October 2022),
2210.08625.

[12] Thomas J. Haines, The stable Bernstein center and test functions for Shimura varieties, Automorphic forms and
Galois representations. Vol. 2, 2014, pp. 118–186.

[13] Thomas J. Haines and Timo Richarz, The test function conjecture for parahoric local models, J. Amer. Math. Soc.
34 (2021), no. 1, 135–218.

[14] Paul Hamacher and Wansu Kim, l-adic étale cohomology of Shimura varieties of Hodge type with non-trivial coeffi-
cients, Math. Ann. 375 (2019), no. 3-4, 973–1044.

[15] Paul Hamacher and Eva Viehmann, Irreducible components of minuscule affine Deligne-Lusztig varieties, Algebra
Number Theory 12 (2018), no. 7, 1611–1634.

[16] X. He and M. Rapoport, Stratifications in the reduction of Shimura varieties, Manuscripta Math. 152 (2017), no. 3-4,
317–343.

[17] Xuhua He, Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. of Math. (2) 179 (2014),
no. 1, 367–404.

[18] , Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties, Ann. Sci. Éc. Norm. Supér. (4)
49 (2016), no. 5, 1125–1141.

[19] Xuhua He and Rong Zhou, On the connected components of affine Deligne–Lusztig varieties, Duke Math. J. 169
(2020), no. 14, 2697–2765.

[20] Xuhua He, Rong Zhou, and Yihang Zhu, Stabilizers of irreducible components of affine Deligne–Lusztig varieties,
arXiv e-prints (September 2021), arXiv:2109.02594.

[21] Jens Hesse, Central leaves on Shimura varieties with parahoric reduction, arXiv e-prints (March 2020), 2003.03175.
[22] Manuel Hoff, Parahoric (G, µ)-displays and the EKOR-stratification on Shimura varieties of Hodge type (2023). PhD

Thesis in preparation.
[23] Pol van Hoften, On the ordinary Hecke orbit conjecture, arXiv e-prints (December 2021), available at 2112.12422.
[24] Pol van Hoften and Luciena Xiao Xiao, Monodromy and Irreducibility of Igusa Varieties, arXiv e-prints (February

2021), 2102.09870.
[25] M. Kisin and G. Pappas, Integral models of Shimura varieties with parahoric level structure, Publ. Math. Inst. Hautes

Études Sci. 128 (2018), 121–218.
[26] Mark Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), no. 4, 967–1012.
[27] , mod p points on Shimura varieties of abelian type, J. Amer. Math. Soc. 30 (2017), no. 3, 819–914.
[28] Mark Kisin, Keerthi Madapusi Pera, and Sug Woo Shin, Honda-Tate theory for Shimura varieties, Duke Math. J.

171 (2022), no. 7, 1559–1614. MR4484214
[29] Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339.
[30] Arno Kret and Sug Woo Shin, H0 of Igusa varieties via automorphic forms, arXiv e-prints (February 2021),

arXiv:2102.10690, available at 2102.10690.
[31] R. P. Langlands, Some contemporary problems with origins in the Jugendtraum, Mathematical developments arising

from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), 1976,
pp. 401–418.

[32] , Shimura varieties and the Selberg trace formula, Canadian J. Math. 29 (1977), no. 6, 1292–1299.
[33] R. P. Langlands and M. Rapoport, Shimuravarietäten und Gerben, J. Reine Angew. Math. 378 (1987), 113–220.
[34] Eike Lau, Dieudonné theory over semiperfect rings and perfectoid rings, Compos. Math. 154 (2018), no. 9, 1974–

2004. MR3867290

2112.12422
2102.10690


60 POL VAN HOFTEN

[35] George Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, Analysis and topology on
singular spaces, II, III (Luminy, 1981), 1983, pp. 208–229.

[36] Keerthi Madapusi Pera, Toroidal compactifications of integral models of Shimura varieties of Hodge type, Ann. Sci.
Éc. Norm. Supér. (4) 52 (2019), no. 2, 393–514.

[37] J. S. Milne, Introduction to Shimura varieties, Harmonic analysis, the trace formula, and Shimura varieties, 2005,
pp. 265–378.

[38] James S. Milne, The points on a Shimura variety modulo a prime of good reduction, The zeta functions of Picard
modular surfaces, 1992, pp. 151–253.

[39] Sian Nie, Connected components of closed affine Deligne-Lusztig varieties in affine Grassmannians, Amer. J. Math.
140 (2018), no. 5, 1357–1397.

[40] Sian Nie, Connectedness of affine Deligne-Lusztig varieties for unramified groups, arXiv e-prints (July 2021),
2107.05205.

[41] G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1,
118–198. With an appendix by T. Haines and Rapoport.

[42] Georgios Pappas, On integral models of Shimura varieties, Mathematische Annalen (2022Apr).
[43] Georgios Pappas and Michael Rapoport, p-adic shtukas and the theory of global and local Shimura varieties, arXiv

e-prints (June 2021), 2106.08270.
[44] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics,

vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen.
[45] M. Rapoport and M. Richartz, On the classification and specialization of F -isocrystals with additional structure,

Compositio Math. 103 (1996), no. 2, 153–181.
[46] M. Rapoport and Th. Zink, Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton

University Press, Princeton, NJ, 1996.
[47] Michael Rapoport, A guide to the reduction modulo p of Shimura varieties, 2005, pp. 271–318. Automorphic forms.

I.
[48] Michael Rapoport and Eva Viehmann, Towards a theory of local Shimura varieties, Münster J. Math. 7 (2014),

no. 1, 273–326.
[49] Harry Reimann, The semi-simple zeta function of quaternionic Shimura varieties, Lecture Notes in Mathematics,

vol. 1657, Springer-Verlag, Berlin, 1997.
[50] Xu Shen, Chia-Fu Yu, and Chao Zhang, EKOR strata for Shimura varieties with parahoric level structure, Duke

Math. J. 170 (2021), no. 14, 3111–3236.
[51] The Stacks project authors, The stacks project, 2023.
[52] J. Tits, Reductive groups over local fields, Automorphic forms, representations and L-functions (Proc. Sympos. Pure

Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, 1979, pp. 29–69.
[53] Torsten Wedhorn and Paul Ziegler, Tautological rings of Shimura varieties and cycle classes of Ekedahl-Oort strata,

arXiv e-prints (2018), 1811.04843.
[54] Liang Xiao and Xinwen Zhu, Cycles on Shimura varieties via geometric Satake, arXiv e-prints (2017), 1707.05700.
[55] Rong Zhou, Mod p isogeny classes on Shimura varieties with parahoric level structure, Duke Math. J. 169 (2020),

no. 15, 2937–3031.
[56] Rong Zhou and Yihang Zhu, Twisted orbital integrals and irreducible components of affine Deligne-Lusztig varieties,

Camb. J. Math. 8 (2020), no. 1, 149–241.
[57] Xinwen Zhu, Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of Math. (2) 185 (2017),

no. 2, 403–492.

Stanford mathematics department, 450 Jane Stanford way, Building 380, Stanford, CA 94305, USA
Email address: pol.van.hoften@stanford.edu


	1. Introduction and statement of results
	1.1. Introduction
	1.2. Main results
	1.3. Overview of the proof
	1.4. Outline of the paper

	2. Local shtukas
	2.1. Some perfect algebraic geometry
	2.2. Affine flag varieties, moduli stacks of shtukas and forgetful maps
	2.3. Restricted local shtukas and forgetful maps
	2.4. Affine Deligne–Lusztig varieties

	3. Uniformisation of isogeny classes
	3.1. Integral models of Shimura varieties
	3.2. CM Lifts
	3.3. Lifting uniformisation
	3.4. Uniformisation and connected components

	4. The Cartesian diagram
	4.1. The natural map is a closed immersion
	4.2. A perfect local model diagram
	4.3. Connected components of closures of KR strata
	4.4. Proof of the main theorems
	4.5. Consequences for irreducible components

	Appendix A. Connected components of affine Deligne–Lusztig varieties with very special level structure, by Rong Zhou
	A.1. The main result
	A.2. Proof of Proposition A.1.6
	A.3. Proof of Proposition A.1.7
	A.4. Uniformisation in the case of very special level structure

	References

