MOD p POINTS ON SHIMURA VARIETIES OF PARAHORIC LEVEL
POL VAN HOFTEN, WITH AN APPENDIX BY RONG ZHOU

ABSTRACT. We study the F,-points of the Kisin-Pappas integral models of Shimura varieties of Hodge
type with parahoric level. We show that if the group is quasi-split, then every isogeny class contains
the reduction of a CM point, proving a conjecture of Kisin—-Madapusi-Pera—Shin. We furthermore show
that the mod p isogeny classes are of the form predicted by the Langlands—Rapoport conjecture (cf.
Conjecture 9.2 of ) if either the Shimura variety is proper or if the group at p is unramified. An
important ingredient in our work is a global argument that allows us to reduce the conjecture to the case
of very special parahoric level. To deal with this case, we use a result of Rong Zhou on the connected
components of affine Deligne—Lusztig varieties with very special level proved in the Appendix. As a
corollary to our arguments, we obtain irreducibility results for Ekedahl-Oort strata.
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Introduction. In [32], Langlands outlines a three-part approach to prove that the Hasse—Weil
zeta functions of Shimura varieties are related to L-functions of automorphic forms. The second part is
about describing the mod p points of suitable integral models of Shimura varieties, which is the central
topic of this article.

A conjectural description of the mod p points of integral models of Shimura varieties was first
given by Langlands in [31] and was later refined by Langlands—Rapoport and Rapoport [33,/47,49].
Together with the test function conjecture of Haines—Kottwitz [12|, which was recently proved by
Haines—Richarz [13], this conjecture is the main geometrical input to the Langlands—Kottwitz method
for Shimura varieties of parahoric level. To explain these conjectures, we first need to introduce some
notation.

Let (G, X) be a Shimura datum of Hodge type, let p be a prime number and let U, C G(Q,) be a
parahoric subgroup. For sufficiently small compact open subgroups UP C G(A?), there is a Shimura
variety Shy (G, X) of level U = UPU,, which is a smooth quasi-projective variety defined over the
reflex field E. For a prime v|p of F, there should be a canonical integral model 17 (G, X)) over OF,(v)-

When U, is hyperspecial, canonical integral models should be smooth and are unique if they satisfy
a certain extension property (cf. [38]). Recent work [42,43| of Pappas and Pappas—Rapoport defines a
notion of canonical integral models when U, is an arbitrary parahoric and proves that they are unique
if they exist.

Then there should be a bijection (see |33, Section 5] and |47, Conjecture 9.2])

(1.1.1) lim S0, (G, X)(Fp) = [ S(9),
U ®

where

S() = I(Q\Xp(0) x XP(9).

Let us elaborate: The sets S(¢) are supposed to correspond to points in a single isogeny class, with
X,(¢) parametrising p-power isogenies, X?(¢) parametrising prime-to-p isogenies and I,(Q) the group
of self quasi-isogenies. The set XP(¢)isa G (A?)-torsor and X)(¢) is a subset of G(Qy")/G(Zy"), where
G/Z, is the parahoric group scheme with G(Z,) = Up. In fact, the set X, (¢) is the set of F,-points of
an affine Deligne-Lusztig variety, see Section [2.4.2

In the unramified PEL case, corresponds to Rapoport—Zink uniformisation of isogeny classes
(see |46, Section 6]), with X,(¢) corresponding to the set of F)-points of a Rapoport-Zink space. This
is why we will often refer to as uniformisation of isogeny classes. Uniformisation of isogeny
classes for Shimura varieties of Hodge type is often assumed in recent work in the area, cf. [14,21}43].

We also expect that is compatible with the action of G(AI}) on both sides, and that the
action of Frobenius on the left-hand side should correspond to the action of a certain operator ® on
the right-hand side. If G, is quasi-split, then we moreover expect that each isogeny class contains
the reduction of a special point, see |28, Conjecture 1].
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1.2. Main results. Let (G, X) be a Shimura datum of Hodge type and let p > 2 be a prime. We
will assume throughout this introduction that: The group Gg, is quasi-split and splits over a tamely
ramified extension, the prime p does not divide the order of 711 (G) and 71(G)j, is torsion—freﬂ. Here
I, C Gal(Q,/Q,) is the inertia group and 7 (G) is the algebraic fundamental group of G.

Let U, C G(Qp) be a parahoric subgroup, let U? C G(A?) be a sufficiently small compact open
subgroup and consider the Shimura variety Shy (G, X) of level U = UPU,, which is an algebraic variety
over the reflex field E. By [25, Theorem 0.1], this Shimura variety has an extension to a flat normal
scheme Y7 (G, X) over O E.(v), Where v|p is a prime of the reflex field E. Under our assumptions, these
integral models are canonical in the sense of [42, Definition 7.1.3|, see |42, Theorem 1.4].

Theorem 1. Let (G, X) be a Shimura variety of Hodge type as above. Then each isogeny class of
(G, X)(Fp) contains a point x which is the reduction of a special point on Shy (G, X).

This confirms [28, Conjecture 1|. Theorem [1] for very special parahoric subgroups U, is part 2 of
Theorem of the appendix by Rong Zhou.

Theorem |I| was proved by Kisin when U, is a hyperspecial subgroup, see [27], and proved by Zhou
when G, is residually split, see [55]. We remind the reader that split implies residually split implies
quasi-split, and that residually split and unramified implies split. As in [27,55|, such a lifting result
is deduced from uniformisation of isogeny classes, which is our second main result. Part 1 of the next
theorem is part 1 of Theorem of the appendix.

Theorem 2. Let (G, X) be as above and let U, denote a parahoric subgroup of G(Qp).

(1) If Uy is very special, then each isogeny class of (G, X)(F,) has the form

1o(Q\Xp(0) x XP(¢)/UP.

(2) If either Gq, splits over an unramified extension or if Shy (G, X) is proper, then the same
conclusion holds for arbitrary parahoric subgroups U,.

As a consequence of part 2 of Theorem 2, we verify that the He-Rapoport axioms of [16] hold for
the Kisin-Pappas integral models. All but one of the axioms (Axiom 4(c)) were proved in earlier work
of Zhou, see [55].

Theorem 3. Let (G, X) be a Shimura datum of Hodge type as above. If either Gg, splits over an
unramified extension or if Shy (G, X) is proper, then the He—Rapoport axioms of |16, Section 3| hold
for the Kisin—Pappas integral models.

Combining our proof of part 2 of Theorem [2{ with the ¢-adic monodromy theorem of |23], we obtain
an irreducibility result for the Ekedahl-Kottwitz—Oort—Rapoport (EKOR) strata defined by Shen—Yu—
Zhang in [50]. We assume for simplicity that G is simple over Q, see Theorem for a more
general statement.

Theorem 4. Let (G, X) be as above, and let U, denote a very special parahoric. Let YUFp{w} be

an EKOR stratum that is not contained in the smallest Newton stratum. If either Gg, splits over an
unramified extension or if Shy (G, X) is proper, then the natural map

yUﬁp{w} — YUEP(G, X)

iduces a bijection on sets of connected components.

IFor Shimura data of abelian type that are not of type D¥ in the sense of |37, Appendix B|, one can always find an
auxiliary Shimura datum of Hodge type where the last two conditions are satisfied, see |25, Lemma 4.6.22].
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In particular, this proves an irreducibility result for Ekedahl-Oort (EO) strata, which are the EKOR
strata at hyperspecial level. T heorem was proved by Ekedahl and van der Geer [§] in the Siegel case.
Theorem (4] is used in [24] to prove irreducibility results for Igusa varieties.

1.3. Overview of the proof. Both |27] and [55] employ roughly the same strategy, which we will
now briefly sketch: The integral models .77/ (G, X) of Shimura varieties of Hodge type come equipped,
by construction, with finite maps .77(G, X) — %k (GSp, ST) to Siegel modular varieties. Given a
point z € (G, X)(F,), classical Dieudonné theory produces a map

Xp(6) = S (GSp, SF)(Fy),

and the main difficulty is to show that it factors through .7/ (G, X). A deformation theoretic argument
shows that it suffices to prove this factorisation for one point on each connected component of X,(¢),
and therefore we need to understand these connected components. In the hyperspecial case, this is
done in [6], and in the parahoric case this is done in [19], under the assumption that Gg, is residually
split. The main obstruction to extend the methods of |55] beyond the residually split case, is that we
do not understand connected components of affine Deligne—Lusztig varieties of parahoric level for more
general groups.ﬂ

1.3.1. In Appendix [A] Rong Zhou studies connected components of affine Deligne-Lusztig varieties
for quasi-split groups and very special parahoric subgroups, generalising results of [6] and [39] in the
case of unramified groups. In particular, part 1 of Theorem [2] and Theorem [I] in the case of a very
special parahoric are proved there, see Theorem [A.4.5]

1.3.2. In Section [ we prove uniformisation for a general parahoric subgroup by reducing to the case of
a very special parahoric subgroup. This reduction argument happens on the level of Shimura varieties;
we will give a brief overview of our reduction argument below.

Let U, denote a very special parahoric subgroup and let U]’J denote an Iwahori subgroup contained
in U,, then by [55, Section 7| there is a proper morphism of integral models /7/(G, X) = Sy (G, X)
and we let ShUZr) — Shy, be the induced morphism on the perfections of their special fibers. There is
a commutative diagram

Shgy —— ShtG,u,UI’,

(1.3.1) l l

ShG,U S ShtG#?Up,

where Shtg , v, is the stack of parahoric Up-shtukas of type u introduced by Xiao-Zhu [54] (cf. Section
2.2.7 and [50, Section 4]), with p the inverse of the Hodge cocharacter induced by the Shimura
datum (G, X).

The horizontal morphisms in are the Hodge type analogues of the morphism from the moduli
space of abelian varieties to the moduli stack of quasi-polarised Dieudonné modules. If G = GSp, then
this diagram is Cartesian. In general, it follows from ‘local uniformisation’ of Shtq , ¢, that isogeny
classes in ShgyUé have the correct form if is Cartesian, see Theorem One of the main
technical results of this paper, Theorem is that the diagram is Cartesian under the assumptions
of part 2 of Theorem [2 which proves a conjecture of He and Rapoport that we learned from Rong
Zhou.

2After a first version of our paper appeared, we learned of work of Nie [40] which solves this problem for unramified
groups. Recently there has been work of Gleason-Lim-Xu |10] and Gleason-Lourengo [11] which completely settles the
problem of understanding connected components of affine Deligne-Lusztig varieties.
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1.3.3.  'We prove in Section [2| see Proposition @} that the morphism Shtg vy — Shtg v, is
representable by perfectly proper algebraic spaces, and we let Shg 77 . be the fiber product of .
There is a closed immersion ¢ : Shg 7 — Shg 7« given by the universal property of the fiber product,
see Proposition To prove the main theorem, it suffices to show that ¢ is an isomorphism.

We first show that Shg v . is equidimensional of the same dimension as Shg v and that it has a
Kottwitz—Rapoport (KR) stratification with the expected properties. To do this, we build a local model
diagram for Shg ¢ 4 in the world of perfect algebraic geometry, see Proposition This requires
us to produce a version of the diagram in for stacks of restricted shtukas, and to analyse the
forgetful maps for these stacks. Another key ingredient is the fact, provedﬁ by Xiao—Zhu, [54], and
Shen-Yu-Zhang, |50|, that the morphisms from Sh¢ 7 to these stacks of restricted shtukas are perfectly
smooth.

The next step is to study the irreducible components of Shg . and Shg . In Section see
Proposition we will show that each irreducible component of Shg 77 . can be moved into Shg 7
using prime-to-p Hecke operators. Since Shg v 4 is stable under the prime-to-p Hecke operators, we
may conclude from this that ¢ : Shg 7 — Shg 7« is an isomorphism.

To prove Proposition we use the KR stratification of both Sh¢ 7 and Shg . to reduce
to analysing irreducible components in each KR stratum separately. Our proof then proceeds by
degenerating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport—Zink
uniformisation of the basic locus.

Our assumption that either Gg, splits over an unramified extension or that Shy (G, X) is proper
will be used to prove that every irreducible component of the closure of a KR stratum in Shg 7«
intersects the zero-dimensional KR stratum, see Lemma [4.3.4] and Proposition In the proper
case, it is enough to prove that KR strata in Shg ¢, are quasi-affine. In the unramified case, we use
results of [53] and [1] on the Ekedahl-Oort stratification and results of [17] on the geometry of forgetful
maps.

1.4. Outline of the paper. In Section [2] we will study forgetful maps for moduli stacks of local
shtukas and moduli stacks of restricted local shtukas. We will also study Newton strata in moduli
spaces of shtukas and describe them explicitly in terms of affine Deligne-Lusztig varieties. In Section
we study uniformisation of isogeny classes in Shimura varieties of Hodge type at parahoric level. We
will deduce the existence of CM lifts at arbitrary parahoric level from the results of Appendix [A] and
we will show that uniformisation for general parahoric subgroups is equivalent to a certain diagram
being Cartesian. In Section [d] we prove that this diagram is Cartesian.

2. LOCAL SHTUKAS

We start this section by recalling some perfect algebraic geometry from [54, Appendix A| and defining
a notion of weakly perfectly smooth morphisms of perfect algebraic stacks.

In the rest of the section we will recall the moduli stacks of local shtukas with parahoric level of
[50] and study the forgetful maps between them. We start by proving Proposition , which states
that this forgetful map is representable and proper. We then study forgetful maps of restricted local
shtukas and prove Proposition which is an important technical result that will be used in Section
to prove equidimensionality of ShG,szﬂ*.

In the second half, we discuss o-conjugacy classes and the Newton stratification on moduli stacks
of local shtukas. We end by discussing affine Deligne-Lusztig varieties and use them in Lemma [2.4.5
to describe Newton strata in moduli stacks of local shtukas. This latter result is used in Section [3 to
‘lift” uniformisation along forgetful maps.

3See Remark
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2.1. Some perfect algebraic geometry. We will use the language of perfect algebraic geometry
from [57, Appendix A]. Let k = F,, and denote by Affzerf the category of perfect k-algebras, equipped

with the étale topology. Perfect k-schemes define fpqc sheaves on Affzerf, and for X a scheme over k
we will write XPe! for the perfection of X (the inverse limit over the relative k-Frobenius of X).

Perfect algebraic spaces are defined to be sheaves on Affr,;erlc that are étale locally isomorphic to
perfect schemes. See [54, Definition A.1.7] for the definition of a pfp (perfectly of finite presentation)
algebraic space. A perfect algebraic space is pfp if and only if it is isomorphic to the perfection of
an algebraic space of finite presentation over k, see |54, Proposition A.1.8]. We will often write pfp
algebraic space to mean pfp perfect algebraic space.

Lemma 2.1.1. If X is a pfp algebraic space. Then for every directed set I and any inverse system
(T3, fi,j) of perfect k-schemes with all f; ; affine and all T; qcgs, the natural map

Hom(@ﬂ,X) — @Hom(ﬂ-,X)

1 a bijection.

Proof. Choose a deperfection X — Y of X using [54, Proposition A.1.8]. We may then apply [51]
Proposition 01ZC| to deduce that the natural map
(2.1.1) Hom(@ﬂ, Y)— ligHom(Ti, Y),

(2

is an isomorphism. We conclude by noting that (2.1.1)) can be identified
Hom(@ﬂ, X) — @Hom(ﬂ-, X)
i i

since the T; are perfect and since T is perfect. O

2.1.2.  We will use the notion of perfectly proper morphism of perfect algebraic spaces, see |57}, Defi-
nition A.18|. A morphism f: X — Y of pfp algebraic spaces over k is perfectly proper if and only if it
is isomorphic to the perfection of a proper morphism of algebraic spaces of finite presentation over k,
see [57, Lemma A.19]. We will often write perfectly proper algebraic space to mean a perfect algebraic
space whose structure map to Speck is perfectly proper.

Recall that a morphism f : X — Y of perfect algebraic spaces is called perfectly smooth of relative
dimension d at x, where x € X, if there is an étale neighbourhood U — X of z and V' — Y of f(x)
such that U — X — Y factors through a map h: U — V and such that h factors as h = proh’ where

B U — (ADPet v

is étale and where pr : (APt x V' — V is the projection. It is called perfectly smooth of relative
dimension d if it is perfectly smooth of relative dimension d at all points x € X. This property
is preserved under base change, and the composition of a perfectly smooth morphism f of relative
dimension d with a perfectly smooth morphism g of relative dimension d’ is perfectly smooth of relative
dimension d + d’. A morphism f : X — Y is called perfectly smooth if it is perfectly smooth of some
dimension at every x € X. This property is also preserved under base change and composition.

Example 2.1.3. If f : X — Y is a morphism of schemes over k that is smooth of relative dimension d
at x € X, then frerf . xpert _y yperf g perfectly smooth of relative dimension d at x by |51, Lemma
054L).

Lemma 2.1.4. Let f : X — Y be a perfectly smooth morphism of perfect algebraic spaces. If X is
connected, then f is perfectly smooth of relative dimension d for some integer d.
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Proof. Let x € X. Then f is perfectly smooth of relative dimension d at = for some integer d, and it
follows from the definition that the same is true for all u in an open neighborhood W of x. Now let
2’ € X. Then f is perfectly smooth of relative dimension d’ at 2’ for some integer d’, and it suffices to
show that d = d’. Note that f is perfectly smooth of relative dimension d’ at «’ for all v/ in an open
neighborhood W’ of ’.

Since X is connected, we know W/ N W is non-empty and thus there is a point v’ € W/ N W such
that f is perfectly smooth of relative dimension d and d’ at u”. It follows from the definition that there
are open neighborhoods U and U’ of u/ such f~!(f(u)) NU is étale locally isomorphic to (A%)Per and
such that f~1(f(u)) N U is étale locally isomorphic to (A% )Pt For dimension reasons, we must then
have d = d'. O

Definition 2.1.5. A morphism f :Y — Z of perfect algebraic spaces is called weakly perfectly smooth
of relative dimension d at y for y € Y if: There exists an open neighborhood U of y and a surjective
map g : X — U that is perfectly smooth of relative dimension e, where X is a perfect algebraic space,
such that fog: X — Z is perfectly smooth of relative dimension e + d. A morphism is called weakly
perfectly smooth of relative dimension d if it is weakly perfectly smooth of relative dimension d at y
forally e Y.

This property is preserved under base change, and the composition of a weakly perfectly smooth
morphism of relative dimension d with a weakly perfectly smooth morphism of relative dimension d’
is a weakly perfectly smooth morphism of relative dimension d + d’. The following lemmas show that
the integer d is well-defined.

Lemma 2.1.6. Let f : X — Y be an open morphism of equidimensional pfp algebraic spaces such that
the fibers of f are equidimensional of dimension d. Then dim X +d = Dim Y.

Proof. This follows from the corresponding fact for open morphisms of finite type schemes over k, by
choosing a deperfection of f, using [57, Proposition A.17], and applying |51, Lemma 0AFE| and its
proof. O

Lemma 2.1.7. If f : Y — Z is weakly perfectly smooth of relative dimension d aty € Y, then there
is an open neighborhood U of y such that U N f=1(f(y)) is equidimensional of dimension d.

Proof. The statement is Zariski local on the source, so after replacing Y by an open neighborhood of a
point in Y there is a surjective map g : X — Y that is perfectly smooth of relative dimension e, such
that fog: X — Z is perfectly smooth of relative dimension e + d.

Then the scheme (f o g)~!(2) is equidimensional of dimension e +d since f og is perfectly smooth of
relative dimension e+d. Similarly the fibers of the fpqc cover (fog)~!(z) — f~1(2) are equidimensional
of dimension e. It now follows from Lemma that f~!(z) is equidimensional of dimension d. [J

A morphism f : Y — Z is called weakly perfectly smooth if there is a perfectly smooth surjection
g: X — Y such that f o g is perfectly smooth. The following lemma relates this to Definition [2.1.5]

Lemma 2.1.8. A morphism f : Y — Z is weakly perfectly smooth if and only if for all y € Y the
morphism f is weakly perfectly smooth of relative dimension d, aty, for some positive integer d, which
1s allowed to depend on y.

Proof. If f is weakly perfectly smooth, then there is a perfectly smooth surjection g : X — Y such that
f o g is perfectly smooth. For y € Y there is a connected component V' of X whose image U, contains
y, and such that gy := g!v and f o gy are perfectly smooth. Since V is connected, the morphisms
gy and f o gy are perfectly smooth of relative dimensions e and e + d, for some e and d, see Lemma
Since perfectly smooth morphisms are open, we see that U, is open and so f is weakly perfectly
smooth of relative dimension d at y.
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Conversely, if for all y € Y the morphism f is weakly perfectly smooth of relative dimension d, at
y, then for each y € Y there is an open subset U, C Y containing y and a perfectly smooth surjection
gy : Xy — U, such that f o g, is perfectly smooth. Then the natural map

qg: H Xy =Y
y
is perfectly smooth and surjective and similarly f o g is also perfectly smooth. It follows that f is
weakly perfectly smooth. O

Lemma 2.1.9. Let f : Y — Z be a weakly perfectly smooth morphism of perfect algebraic spaces. If
Y is connected, then f is weakly perfectly smooth of relative dimension d for some d.

Proof. 1t follows from Lemma that for y € Y there exists a positive integer d, such that f is
weakly perfectly smooth of relative dimension d, at y. Moreover, the same is true for all v in an open
neighborhood Uy, of y.

Thus if y,y’ € Y with positive integers dy,d; and open neighborhoods Uy, U/, then U, N Uy is
non-empty because Y is connected. Therefore there is a point u € U, N U, such that f is weakly
perfectly smooth of relative dimensions d and d’ at u. By Lemma m it follows that d = d’ and we
conclude that f is weakly perfectly smooth of relative dimension d. O

Recall that a scheme is called locally integral if its local rings are integral.

Lemma 2.1.10. Let f : Y — Z be a weakly perfectly smooth morphism of perfect schemes. If Z is
locally integral, then Y is locally integral.

Proof. Let y € Y. Then by Lemma the morphism f is weakly perfectly smooth of relative
dimension d at Y. Therefore there is an open subset U, C Y containing y and a surjective map
g : X — U that is perfectly smooth of relative dimension e, such that fog : X — Z is perfectly
smooth of relative dimension e +d. To show that the local ring of Y at y is integral, it suffices by fpqc
descent to do this for the local rings of X.

Let z € X and choose an étale neighbourhood U — X of z and V. — Z of (f o g)(x) such that
U — X — Z factors through a map h : U — V and such that h factors as h = proh’ where

B U — (ATreypert sy

is étale and where pr : (A9T¢)Pef V' — V is the projection.

The local rings of (A9T¢)Pef » V are localisations of perfected polynomial rings over the local rings
of V', and thus integral. Therefore the local rings of U are integral, and by étale descent the local ring
of X at x is integral. O

2.1.11.  We follow |51} Section 04XB| to define certain properties of morphisms of prestacks on Aff I,zerf
that are representable by morphisms of perfect algebraic spaces. For example, a morphism f: X — Y
of prestacks that is representable by perfect algebraic spaces is called perfectly smooth if it is rep-
resentable by perfectly smooth morphisms of perfect algebraic spaces. In other words, if for every
morphism T — Y, where T is a perfect algebraic space, the base change X1 — T is a perfectly smooth
morphism of perfect algebraic spaces.

A pfp algebraic stack is a stack Y on Aﬁ'gerf for the fpqc topology with diagonal representable by
pfp algebraic spaces that admits a perfectly smooth surjectiveﬁ map f: U — Y from a pfp algebraic
space. The main example that we will be interested in is the quotient stackﬂ [X/G] of a pfp algebraic
space X by a pfp group scheme G. This is a pfp algebraic stack because X — [X/G] is perfectly

4This means per definition that f is representable by perfectly smooth surjections of perfect algebraic spaces.
SWe always take quotient stacks in the étale topology unless otherwise specified.
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smooth, see Example [2.1.13] We will also need a notion of weak perfect smoothness for morphisms of
pfp algebraic stacks that are not necessarily representable.

Definition 2.1.12. A morphism f : Y — Z of pfp algebraic stacks is called weakly perfectly smooth,
if there is a perfectly smooth surjective morphism g : X — Y from a pfp algebraic space X such that
the composition f o g is perfectly smooth.

As before, this property is preserved under base change and composition. If f : Y — Z is repre-
sentable, then this is (per definition) equivalent to asking that f : Y — Z is representable by weakly
perfectly smooth morphisms of perfect algebraic spaces.

Example 2.1.13. Let G be a pfp group scheme over Spec k. Then G — Spec k arises as the perfection
of a smooth group scheme over k by [57, Lemma A.26], and therefore G — Speck is perfectly smooth
by Example This means that G-torsors for the étale topology are perfectly smooth morphisms.
In particular, the natural map Speck — [Spec k/G] is perfectly smooth and thus [Spec k/G] — Spec k
is weakly perfectly smooth.

Example 2.1.14. Recall that an étale G-gerbe over a pfp algebraic stack Y is a morphism f : X — Y of
pfp algebraic stacks that is étale locally (on Y') of the form Y x [Speck/G] — Y. Since [Speck/G] —
Spec k is weakly perfectly smooth, it follows that f : X — Y is weakly perfectly smooth because this
can be checked étale locally on Y.

Remark 2.1.15. In [54, Definition A.1.13], a morphism of pfp algebraic stacks satisfying the property in
Definition is called a perfectly smooth morphism. However, it is not clear to us that a morphism
f:Y — Z of pfp algebraic spaces satisfying the property in Definition is perfectly smooth (in
the sense defined in the beginning of Section , rather than just weakly perfectly smooth.

Lemma 2.1.16. Suppose that X is a pfp algebraic space that is equidimensional of dimension d with
an action of a pfp group scheme G, and let Y be a pfp algebraic space together with a weakly perfectly
smooth morphism

FY = [X/G).

Then Y is equidimensional if and only if f is weakly perfectly smooth of relative dimension n, where
DimY =d+n—dimG.

Proof. Consider the fiber product diagram

Y % X
o
— [X/G].
The morphism Y — Y is a G-torsor and hence perfectly smooth of relative dimension equal to dim G
by Example If f is weakly perfectly smooth of relative dimension n, then f is weakly perfectly
smooth of relative dimension n because it is a basechange of f. It follows from Lemma/|2.1.7]and Lemma
that DimY = d + n. Similarly, it follows that the dimension of Y is equal to d + n — dim G.

If Y is equidimensional of dimension Dim Y, then Y is equidimensional of dimension Dim Y +Dim G
by Lemma @l and Lemma . Since both X and Y are equidimensional and pfp, we see that the
dimension of the fibers of f must be equal to DimY + Dim G — d by Lemma [2.1.6, Therefore f is
weakly perfectly smooth of relative dimension n = Dim Y 4+ Dim G — d, and it readily follows from this
that the same holds for f. O

2.2. Affine flag varieties, moduli stacks of shtukas and forgetful maps.
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2.2.1. Let Qp be the completion of a maximal unramified extension of Q,,, which is equipped with an
action of the p-Frobenius 0. Let G be a connected reductive group over Q, and let B(G,Q,) (resp.
B(G, @p)) denote the (extended) Bruhat-Tits building of G' over Q, (resp. @p). For a non-empty
bounded subset & ¢ B(G, Q,) which is contained in an apartment, we let G(Q,)= (resp. G(Q,)=)
denote the subgroup of G(Qy) (resp. G(Qp)) which fixes = pointwise. By the main result of [5], there
exists a smooth affine group scheme G= over Z,, with generic fiber G' which is uniquely characterised by
the property QE(ZP) =G (@p)g. We call such a group scheme the Bruhat—Tits stabiliser group scheme
associated to Z. If Z = {z} is a point, we write G(Q,), (resp. G,) for G(Qp)ay (resp. QN{ZC}).

For 2 C B(G,Q,) as above, we let G, denote the ‘connected stabiliser’ (cf. [5, §4]). We are mainly
interested in the case that = is a point or an open facet f. In this case G; (resp. G,) is the parahoric
group scheme associated to f (resp. x).

We may also consider the corresponding objects over @p and we use the same notation in this case.
When it is understood which point of B(G,Q,) or B (G,Qp) we are referring to, we simply write G
and G for the corresponding group schemes.

An important case that we need for applications is when G = Gq, i.e. the parahoric is equal to the
Bruhat-Tits stabiliser. When this happens, we necessarily have G; = G, where f is the facet containing
x, and x € f is a point ‘in general position’. A parahoric group scheme G over Z, (resp. Zp) is called
a connected parahoric if there exists z € B(G,Q,) (resp. = € B(G,Q,)) such that G = G, = G,.

Let 71(G) be the algebraic fundamental group of Gg,, equipped with its action of Gal(@p /Qp) (cf.
the introduction of |3]), and let I C Gal(Q,/Q,) be the inertia group.

Lemma 2.2.2. If n(G); is torsion free, then Ge = Gy for all z. In other words, all parahoric group
schemes are connected parahoric group schemes.

Proof. This follows from [41, Remark 11 of the appendix]. O

2.2.3. Let S C G@p be a maximal Qp—split torus defined over @, and let T" be its centraliser; it is a
maximal torus of G because G@p is quasi-split by a theorem of Steinberg. Choose a o-invariant alcove

a in the apartment of B(G, @p) associated to S. Let N be the normaliser of 7" in GQp' We define the
relative Weyl group as

Wo = N(Q,)/T(Qy)
and the Twahori—-Weyl group (or extended affine Weyl group) as
W= N(@p)/T@p)a
where T over Zp is the connected Néron model of T'. There is a short exact sequence
0— X.(T); — W — Wy — 0,

where I is the inertia group and X,(7'); denotes the inertia coinvariants of the cocharacter lattice
X.(T) of T. The map X, (T); — W is denoted on elements by A — t*. Let S € W denote the set of
simple reflections in the walls of a and let W, be the subgroup of W generated by S, which we will call
the affine Weyl group.

Parahoric subgroups K of G’(@p) that contain the Iwahori subgroup corresponding to a are called
standard parahoric subgroups; they correspond to subsets K C S such that the subgroup Wi generated
by K is finite; we will call such subsets types. This identification is Frobenius equivariant in the sense
that o(K) corresponds to o(K). In particular, a subset K C S corresponds to a parahoric subgroup
of G if and only if o(K) = K; note that our fixed Iwahori subgroup corresponds to ) C S. There
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are parahoric group schemes Gg over Zp associated to types K as above, and we have identifications
"G ~ gg( K)- In particular, if K is stable under o, then G is defined over Z,. The maximal reductive

quotient (?K)red of the special fiber G of Gx is a split reductive group over the residue field k of Qp,
and the image of Gy in (G )™ is a Borel subgroup. The set of simple roots of (G )™¢ with respect to
this Borel subgroup can be identified with K.

Lemma 2.2.4. Let J C K C S and suppose that Gi is a connected parahoric, then Gy is a connected
parahoric.

Proof. Let xi,x; € B(G, @p) such that Gx = G, and G; = G;,;. We assume that z; and xx are in
general position in their respective facets. Then we have G, = Qw « since G is a connected parahoric,
and we have Q}J = Q~f ;» where §; is the facet corresponding to J.

Since zx lies in the closure of fy, it follows that Gy, (Zp) C Gop (Zp) = Gy (Zp). But Gup(Zy) is
contained in the kernel of the Kottwitz map  : G(Q,) — m1(G);. Therefore, we have G, ,(Z,) C ker(x)
and hence we deduce as in Lemma that g} ; =0z, O

There is a split short exact sequence (our choice of a provides a splitting)
(2.2.1) 0— Wy —= W = 71 (G) — 0.

The affine Weyl group W, has the structure of a Coxeter group, and we will use this to define a Bruhat
order (denoted by <) and a notion of length on W, by splitting and regarding 7 (G); C W as
the subset of length zero elements. We will write ¢(w) for the length of an element of W. Similarly,
we define a partial order < on WK\W /Wi by taking minimal length representatives of double cosets.

2.2.5. In this section we will recall some definitions from [50.,/54,57] and state some results. Let the
notation be as in Sections and so in particular G denotes a connected reductive group over
Qp. Let Gk be a parahoric group scheme over Z, corresponding to a o-stable type K C S. For an

object R of Aﬂ'zerf we set
Dg =SpecW(R), Dy =Spec W(R)[1/p],
where W(R) denotes the ring of p-typical Witt vectors of R. We define group-valued functors on
Affzerf sending an object R to
LG(R) := G(D%)
LTGk(R) := Gk (Dg)
L"Gk(R) :=Gx (W(R)/p"W(R)),

which we call the loop group, respectively the positive loop group, respectively the m-truncated loop
group. Tt follows from [57, Section 1.1] that LGy and LGy are representable by perfect schemes over
k and that LG = @m L™Gk. Moreover, |57, Proposition 1.1] tells us that LG is representable by
an ind-perfect ind-scheme, which means that it is isomorphic to an inductive limit of perfect schemes
along closed immersions. By |57, Lemma 1.2.(i)], the natural map L*Gx — LG is a closed immersion.

2.2.6. Let R be a perfect Fp-algebra and let € and F be Gg-torsors on DRH Recall from |54} Section
3.1.3] that a modification B : €& --+ F is an isomorphism of G-torsors

6:€‘D}}_>‘F‘D;;'

6Here we mean torsor in the fpqc topology on Dr = Spec W(R) in the usual way.
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It follows from the proof of |57, Lemma 1.3] that £ can be trivialised after an étale cover Spec Dpr —
Spec Dg coming from an étale cover Spec R’ — Spec R. Therefore we can also think of Gy -torsors over
Dp as étale LT G -torsors over Spec R.

We define the (partial) affine flag variety Grg to be the functor sending R to the set of isomorphism
classes of modifications

a:E--» &

where £ is a Gi-torsor over Dg, and where &Y is the trivial Gx-torsor over Dpg. There is a natural
action of

LG = Aut(£°|,.)
R

on Grg by postcomposing « with an automorphism of the restriction to D% of £Y and the orbit of

the Fp-point of Grg given by the identity modification 9 — £% induces a map O : LG — Grg. The
map O induces an identification (that we will implicitly use from now on)

GTK(Fp) =~ G(@p)/gK(ip)

It is a result of [2,/57] that Grg is representable by an ind-projective ind-scheme. We also define the
Hecke stack Hkg to be the stack on Affierf sending R to the groupoid of modifications 5 : & --» F.
The natural map Grg — Hkg is an LT Gg-torsor for the étale topology, where LT Gy acts on Grg via
the closed immersion LTGx C LG.

2.2.7. Recall from [50, Definition 4.1.3] that a (local) Gx-shtuka over a perfect k-algebra R is a
pair (&, 3), where £ is a Gg-torsor over D and where (8 is a modification § : 0*& --» £. Here
o : Dp — Dp denotes the Frobenius morphism induced from the absolute Frobenius on R, and we
consider the restriction of 0*& to D}, as a G-torsor via the isomorphism o : 0*G — G, coming from the
fact that G is defined over @Q,. A morphism of shtukas (€, 3) — (&', 8’) is an isomorphism f: €& — &’
of Gi-torsors such that the following diagram commutes

o -l e
| |7
e g

We will write Shtg i (R) for the groupoid of Gi-shtukas over R and Shtg i for the stack on Aﬂ'I]zerf
sending R to Shtg, i (R).

Remark 2.2.8. When G = GL, z,, a Gx-shtuka over a perfect ring R is a projective module M of
rank n over W (R) together with an isomorphism

B:o*M[1/p] — M[1/p].

If the map [ satisfies pM C B(c*M) C M, then the pair (M, 3) is a Dieudonné module. By a result
of Gabber, see [34], there is a p-divisible group over Spec R with Dieudonné module (M, f3).

2.2.9. For an inclusion of types J C K, there is a closed immersion LTG; C LTGy, since both are
closed subschemes of LG by [57, Lemma 1.2.(i)]. If J and K are o-stable, then pushing out torsors
along LtG; — LT Gk induces a forgetful map

ShtGJ — SthK .

In this section we will show that these forgetful maps are representable by perfectly proper algebraic
spaces, which is an analogue of |41, Proposition 8.7].
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Let (Gg )™ be the maximal reductive quotient of the 1-truncated loop group L'Gr = Gx and let
Hj be the image of G in (Gx)™; it is a standard parabolic subgroup of type J C K (recall that K
can be identified with the set of simple roots of (Gx )™ with respect to the Borel B that is the image
of Gy — (Gr)™¥). Recall that for a perfect group scheme H we write BH for the classifying stack

of H; in other words, BH is the groupoid valued functor that sends an object R of Aff}zerf to the
groupoid of H torsors (in the étale topology) over Spec R. There is a natural morphism Spec k — BH
corresponding to the trivial H-torsor over Spec k, which induces an isomorphism [Spec k/H] — BH.

Lemma 2.2.10. The forgetful map BL*YG; — BL7 G is a (G )™ /H j-bundle for the étale topology,
i particular it is representable by perfectly proper algebraic spaces.

Proof. Let R be a perfect Fp-algebra and let X be an LGy torsor over Spec R represented by a map
Spec R — BL1Gg. It follows from the definition of quotient stacks that both squares in the following
diagram of stacks are Cartesian

X —— Speck

! |

[X/LJFQJ] _— BL*QJ

! |

SpecR — BL1Gk.

By |57, Lemma 1.3|, there is an étale cover T — Spec R such that Xp is isomorphic to the trivial
LG torsor over T, hence [X/L*G,] is étale locally isomorphic to Spec R x [L1Gr /LT G;]. Therefore
it suffices to show that [LTGx/L1G,] is representable by a perfectly proper scheme. It follows from
the proof of [41, Proposition 8.7], cf. Lemma below, that

[LYGk/LTGy] ~ [(Gk)™/H,]

and the latter is representable by a perfectly proper scheme because it is the perfection of a partial
flag variety for (Gx ). O

Corollary 2.2.11. The map Shtg.; — Shtg i is a (Gi)™Y/H -bundle for the étale topology, in
particular it is representable by perfectly proper algebraic spaces.

Proof. This follows because the following diagram is Cartesian

Shtg ; — Shtg i

(2.2.2) l l

BL+QJ —_— BL*QK.

Indeed, this is a straightforward consequence of the definitions. [A Gj-shtuka is the same thing as a
Gri-shtuka (&, B) together with an L*G -torsor £ and an isomorphism « : &’ X 1+G, Ltgg~€&] O

2.2.12. Relative position. It follows from the discussion in [19, Section 3.6] that there is an LTGk-
equivariant stratification

GI‘K = U GI'K('LU),
wEWK\VV/WK
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where each Grg(w) is a locally closed subscheme of Grg, such that on F,-points we recover the
Bruhat—Tits decomposition

GrK(Fp) = G(@p)/gK(Zp) = U gK(Zp)ng(Zp)/gK<Zp)a
wEWR\W /Wi

see |41, Proposition 8 of the appendix|. We deduce from this that we get a decomposition

[LTGk\ Gri] =: Hkg = U Hk g (w),
’LUEWK\W/WK
where Hkg (w) = [LTGk\ Gri(w)]. It follows moreover from |19, Section 3.6] that the closure of

Grg (w) is equal to
Grg (S w) = U Grg (w

Furthermore, when K = (), the dimension of Grg(w) is equal to the length ¢(w) of w.

2.2.13. Let {u} be a G(Q,)-conjugacy class of cocharacters of Gg, - Recall that we fixed a maximal
D

torus T of G in Section Choose a Borel B of G@p containing T@p and let 7 be the image in

X.(T)s of a B-dominant representative of {u}. The set of {u}-admissible elements is defined as

Adm({p}) ={w e W : w < t*® for some z € Wp}.

There is a unique element 7 = 7, € Adm({u}) of length zero and in fact Adm({u}) C W,7. For K a
o-stable type, we define Adm({u})x as the image of Adm({u}) under W — Wi \W/Wg. We write
EAdm({u}) for Adm({u}) NEW, where KW € W denotes the subset of elements that are of minimal
length in their left Wi-coset.

If {g} is minuscule and K is a o-stable type, then we define the perfect local model attached to {u}
and K to be the perfect projective scheme

weAdm({p}) K
The scheme MII‘;C{ .} 18 equidimensional of dimension d = (2p, 1) = ¢(t*(®), where p is the half sum
of the positive roots (with respect to B). The locally closed subschemes Grg(w) C Mloc{ y are called
Kottwitz—Rapoport (KR) strata.

2.2.14. Let {u} be a conjugacy class of cocharacters of Gg as above, and let Adm({u})k be the
D

p-admissible set. Recall that the stack Hkg is the moduli stack of modifications £ --+ F of NL*QK—
torsors. We define a map Rel : Shtg x — Hkg sending (€, ) to 8 : 0*E --» €. For w € Wi \W /W,
we have the locally closed substack Hkg (w) C Hkg from Section [2.2.12) and its pullback along Rel

defines a locally closed substack
Shth(w) C Shtg i -

Following |50, Definition 4.1.3|, we define the stack of shtukas of level Gx and type p to be

ShtG,K,{u} = U ShtGJ((’U));
weAdm({u}) K
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it is a closed substack of Shtg g by the discussion in Section|[2.2.12, If J C K is another o-stable type,
then the following diagram commutes by definition of Adm({x})s and Adm({u})x (but it is generally
not Cartesian)

ShtG,J,{;L} E— ShtG,J

! !

ShtG,K,{u} — ShtG’K .

Proposition 2.2.15. The forgetful morphism Shtg s (,; — Shtg i () is representable by perfectly
proper algebraic spaces.

Proof. We know that Shtg ;1,3 — Sht, s is representable by perfectly proper algebraic spaces because
it is a closed immersion, and the map Shtg ; — Shtg k is representable by perfectly proper algebraic
spaces by Corollary The composition is thus representable by perfectly proper algebraic spaces
and factors over Shtg g 1,1, which proves the result. O

2.3. Restricted local shtukas and forgetful maps. We will recall some results from [50, Section
4.2]. Fix a geometric conjugacy class of minuscule cocharacters {u} of G@ for the rest of this section,
P

and let Adm({u})x be the p-admissible set. Recall from [50, Lemma 4.1.4] that Shtg i has the
following quotient description: Let o : LTGx — LTG be the relative Frobenius morphism and let
LGy act on LG via h- g = (h~'go(h)), we denote this action by Ad,. With this notation, there is
an isomorphism

ShtG,K ~ I: LG :| .

Ad, LGk
The map A : LG — Shtg g constructed this way corresponds to a shtuka over LG: It is the modification
B:EY ~0*E), --+ £V given by the tautological element in LG. Moreover the map LG — Shtg x

is precisely the universal LT Gg-torsor over Shtg k.
Consider the following commutative diagram

LG —92 & Grg

2 |
Rel
ShtG’ Kk —— Hkpg .
There is a closed subscheme MIIC;C{Z? C LG defined to be the inverse image of leéc{ u C Grg under
LG — Grg. The discussion in the previous paragraph, along with the commutative diagram, tells us

that there is a natural identification

loc,00
My, Aw}

PHen = 13, 1rgi

For J C K a o-stable subset, there is a closed immersion MlJOE:f C Mllgc{fﬁ which identifies

loc,00
KAu}
7L+QJ C Gr

with the preimage of MII‘QC{ ) under Grj — Grg.
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2.3.1. Let Bk : LYGx — (G )™ be the natural map, where (G )™ is the maximal reductive quotient

of G = L'Gk. Define Ml;;c{;red := ker Bk \ Mligciﬁ; it is a (G ) °d-torsor over Ml}%‘?{u}- We then define

Mloc,lfred
Sht{oeh) = | Al
Gva{/"‘} ) Ado_ L+ gK

It follows from Lemma|2.1.1{that the twisted conjugation action of LTGx on Mﬁ%;red factors through

the action of L™Gg for m > 0, and for such m we define the stack of (m)—rest;icted shtukas of type
{u} by

loc,1—red
Sht(mvl) — MK?{H’}
GKAn} " | Ad, LGk

Note that there are natural morphisms

Mloc,oo Mloc,l—red Mloc,l—red
_ K {un} K {n} K{n} _ (m,1)
(231)  Sheri) = | R Fige | 7 | Ad, Lrgr | 7 | Ady LG | = SMGR )

loc,00 loc,1—red
) — M )
K{u} K {u}

Remark 2.3.2. There is a ‘local model diagram’

induced by the natural map M and the natural map LTGx — L™Gx.

loc,1—red
M.
KA{p}

N

(m,1) loc
Sht ke ( ME -

The left-hand map is an L™Gg-torsor while the right-hand map is a (G )™d-torsor. In particular,
(m71)

the stack ShtG’K’{M} P

sional and since the right-hand map is perfectly smooth of relative dimension dim(Gx )™ we find that

MII‘;C}L;M is pfp and equidimensional by Lemma |2.1.6

is an equidimensional pfp algebraic stack Indeed MI;;C{ ) is pfp and equidimen-

glé){u} and Shtg’fq;:a}. Unfortunately, there is no

natural map between them when K # (). However, we will be able to construct a correspondence
between them instead, and study its properties, see Proposition [2.3.4] Lemma [2.3.9]and Section

Consider the closed immersion L*Q@ C LTGg, which induces a closed immersion B C (?K)red,
where B is the image of LGy in (Gr)red; let ~ - L*Gy — B be the natural surjection. By Lemma
2.1.1} we can choose m > 0 such that the action Ad, LTG on ker v\ M4 factors through L™Gy.

K{u}
As in equation ([2.3.1]), the natural maps

loc,00 loc,00
MK,{M} — ker\ MK,{M}

LTGrx — LGk

2.3.3. The goal of this section is to compare Sht

TA quotient stack [X/G] is defined to be equidimensional if X is equidimensional. The dimension of [X/G] is defined
to be dim X — DimG whenever both X and G are finite dimensional. This is well-defined in view of Lemma [2.1.16
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induce a natural map

Mloc,oo ker ’}’\ Mloc,oo
Shte i () = K{p} K{p}
Y Ada L+gK AdU ngK
For m as above, let H,, be the image of LTGy in L™Gg. Since Mé)ogif C M;‘;C{ZO}, it follows that the
action of LTGy C LTGk on kerv\ Maoglff factors through H,,. Therefore there is a natural map
loc,00 loc,00
My i) kery\My vy

Moot = R, 176, | 7 | Ad, Ha

induced by M%Of{::f — ker v\ Ml@og:f and LY Gy — Hp.
loc,00

Proposition 2.3.4. If m is an integer such that the action Ad, LT Gx on ker v\ M- i factors through
LGk, then the diagram

0 {p}
ShtG,@y{u} [ Ad, Hm”

l L

ker ’Y\ Mloc oo
Shte e {u} ’ [ K’{”}} :

ker v\ Mloco0 :|

where the right vertical map is induced by the closed immersions Mé)oz;ff — M?{f} and H,, — LGk,

1s Cartesian.
We start by proving a lemma.

Lemma 2.3.5. Both squares in the following diagram of perfect group schemes are Cartesian.

LtGy s H,, y B

(2.3.2) j j j

LtGx —— L™Gx —— (G )™

Proof. We first check that the outer square is Cartesian: It is enough to check this on k’-points for all
algebraically closed fields &’ because LT Gy — L1 G is a closed immersion by |57, Lemma 1.2.(i)|]. The
result on the level of k’-points is |5, Theorem 4.6.33].

The left square is Cartesian by definition of H,, and it therefore follows from general properties of
Cartesian squares that the right square is also Cartesian. ]

Lemma 2.3.6. The stacks
1 5 1 )
ker v\ M@C’?:f o ker v\ M ;(’.C{‘:f}
Adg Hm Ado‘ ngK
are equidimensional of the same dimension.

Proof. To compute the dimensions we note that it follows from the right Cartesian square in Lemma
2.3.5] that

Dim H,, = Dim L™Gx — (Dim(Gx )™ — Dim B)
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and thus it suffices to show that

. loc,00
Dim (ker 7\ My 1

,O0

) = Dim (ker Y\ M

POL VAN HOFTEN

loc,00

o {H}) — Dim(G)™ + Dim B.

loc,00

1
'1316 map ker v\ M(Z)(:EM} K{u}
(G )™9-torsor by construction, see (2.3.2)). Therefore the equality above is equivalent to the equality
: : loc
Dim M Dim MQ),{M}’

— M(lz)‘?‘{:“} is a B-torsor by construction and ker~y\ M — MII%?{“} is a

loc _
K{p}

which is true, see Section [2.2.13] O
Proof of Proposition[2.3.4. Consider the following diagram, where the maps are defined as in (2.3.1))

loc,00 7 loc,00

loc,00
Sht L MQ),{M} . ker v\ MQ’{#} ker v\ M@,{u}
Go{nt — |Ad, LTGy 7 | TAd, L¥Gy Ad, Hp,
‘/ loc,00 loc,00 7] loc,00
Sht _ MK,{M} ker v\ MK’{#} ker v\ MKy{u}
GKAp} —  |Ad, LGk Ad, LTGk Ad, LG | *

It follows from Lemma that P™ := Ker (LTGx — L™Gk) is contained in LGy and that P™
is also equal to the kernel of LTGy — H,,. We deduce that the right square is Cartesian by general
properties of quotient stacks (the right horizontal maps are P™-gerbes in a compatible way). The
middle square is Cartesian by general properties of quotient stacks (the middle horizontal maps are
ker y-torsors in a compatible way). We deduce that the outer square of the diagram is Cartesian. [

2.3.7. In this section we record two more lemmas.

Lemma 2.3.8. For each integer m’ > 1 there is an integer m > m' such that there is an inclusion
ker (L+g@ — Hp,) C ker (L“‘g@ — Lm’g@) of closed subschemes of L+g@.
Proof. Fix m’. Recall that
LTGx ~ lim LG
o

L¥Gy = lim ™G,

and the first of these equalities moreover implies that L+ Gy ~ l£1m H,,. The lemma now follows from

Lemma 2.1.11 O

It follows from Lemma that for each m’ there is an m > m/ such that the natural map
L*Q’@ — Lm/Q@ factors through the natural map L+Q@ — H,, via a surjection H,, — Lm’g@. Note
moreover that LGy — L'Gy = Gy — (Gy)™? factors through LTGy — L'Gy — B because the maximal
reductive quotient of Gy is isomorphic to the maximal reductive quotient of B. Thus there is a natural

map kery — ker(LTGy — (Gp)™?) which induces a map ker v\ M@ — Moot 7red

0.{u} 0, {1}
that for m > 0 the action Ad, L+g@ on M%Z)OE;LI; red foctors through an action of Lm’g@.

Lemma 2.3.9. Let m’ > 0 be a positive integer and let m > m’ satisfy the conclusion of Lemma
loc,0c0 loc,1—red

. Recall moreover

2.3.8 Then the map (induced by ker v\ My oy 7 My, and Hy, — L™ Gy)
loc,00 loc,1—red
ker f}/\ va{.“‘} w,{u} _ Sht(m/’l)
Ad, Hp, Ad, L™ Gy G04n}
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18 weakly perfectly smooth.
Proof. The natural map

loc,00 loc,1—red
ket My Gy | | Mot | _ g tm')
Ad, H,, Ad, H,, G0, {n}

is a torsor for ker(B — (Gy)™?) and hence weakly perfectly smooth. The natural map

loc,1—red loc,1—red
ot |, | Mo
Ad, H,, Ad, LG,

is a gerbe for ker(H,, — Lm’g@) and is thus weakly perfectly smooth. It follows that the composition
is weakly perfectly smooth, and the lemma is proved. U

loc,00
ker v\ MK,{

ng”} is not a stack of restricted shtukas in the sense of Shen—Yu-Zhang
o K

2.3.10. The stack [

[50]. However, it is closely related to the more general stacks of restricted shtukas introduced in
[54, Section 5.3|. We define for n > 2 the quotient

locn | __ + loc,
MR = er (LGk — L"Gr) \MSCS

Then by Lemma [2.1.1} for m > n the action Ad, LTGx on Ml;cf;} will factor through L™Gy and we
define

loc,n
Sht(m,n),loc L MK,{M}

GEAup T Ado ngK

We have added the ‘loc’ in the superscript and the condition that n > 2 so that these are not confused
with the previously introduced stacks of restricted shtukas (since the notation is not compatible).

The proof of Lemma m shows that for n > 0 we have an inclusion ker (L+g x — L"Gk) C ker~y
and thus a natural map

loc,n loc,00
MK,{M} — ker 7\ MK,{M} ’

This induces a morphism (for m > n as before)

loc,n loc,c0
Sht(m,n),loc _ MK,{M} ker ’Y\ MK,{M}

GKnh = | Ad, LG | | Ady L"Gic |
which is a torsor for the image of ker v in L"Gg, and thus perfectly smooth.

2.3.11. The EKOR stratification. Recall that KAdm({p}) is the intersection of Adm({u}) with KW,
where KW C W denotes the subset of elements that are of minimal length in their left Wg-coset. By

[50, Lemma 4.2.4], the underlying topological space of Sht(GmI’(l){#} is isomorphic to “Adm({x}) equipped

with the partial order topology (for the partial order < on KAdm({u}) introduced in |50, page 3123]).

They use this to define locally closed substacks Sht(GmI’<1 ){M}{w} for w € KAdm({u}) such that the locally
closed substack

(m,1) — (m,1)
Shtey ey i< w} = g Shte s ('),
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is closed. This allows us to define the Ekedahl-Kottwitz—Oort—Rapoport (EKOR) stratification on any
stack mapping to Sht(Gm;){u}3 for example on Shtg g g,y via (2.3.1) and later on Shimura varieties of

Hodge type. Note that if K = () then the EKOR stratification agrees with the Kottwitz—Rapoport
(KR) stratification from Section [2.2.13| and < agrees with <.

2.4. Affine Deligne—Lusztig varieties. Recall from [45, Section 2.3] that there is a partial order on

the set B(G) of o-conjugacy classes in G(Qp). Let {u} be a G(Q,)-conjugacy class of cocharacters of

Gg and let B(G,{u}) C B(G) be the set of neutral acceptable o-conjugacy classes with respect to
D

{p}, see [48, Definition 2.5].

2.4.1. Let £ be an LG-torsor over k', with k' an algebraically closed field of characteristic p, and let
B :0*E — £ be an isomorphism where ¢ is the absolute Frobenius. After choosing a trivialisation of
&, we see that 5 can be represented by an element bg € G(W (k')[1/p]) well-defined up to o-conjugacy.
Since the set of o-conjugacy classes in G(W (k’)[1/p]) does not depend on the choice of algebraically
closed field £, it thus gives us an element [bg] € B(G).

Let R be a perfect E,—algebra, let £ be an LG-torsor over R and let 8 : "€ — £ be an isomorphism.
Then for [b] € B(G), the subset (using the partial order introduced above)

(Spec R)<pp) := {x € Spec R : [bg(z)] < [b]}
is closed in Spec R by |45, Theorem 3.6.(ii)| and
(Spec R) ) == {z € Spec R : [bg(x)] = [b]}
is locally closed. This gives us a stratification
ShtGJ{ = U Shtngj[b},
[bleB(G)
where Shtg g ;) denotes the locally closed substack of Shtg x whose R-points are given by the full
subgroupoid
ShtG,K,[b} (R) C Shtg x(R)
of maps Spec R — Sht i such that (Spec R)j = Spec R. We will write Shtg g 1,1 5 for the intersec-

tion (fiber product over Shtg i) of Shtg g (4 and Shtg g ); we will see in Corollary m that this is
non-empty if and only if [b] € B(G, {u}).

2.4.2. Let K C S be a o-stable type and let b € G(@p). Then we define the affine Deligne—Lusztig set
X(ub)i ={g € G(Qy)/Gr(Zp) | g™"bo(g) € U Gk (Zp) Gk (Zy)}-

weAdm({p}) K

Let J, be the algebraic group over Q, whose R-points are given by
Jy(R) = {g € G(Qy ®q, R) | g~ "bo(g) = b}.

Then J,(Q,) C G(Q,) acts on X (11, 0) i via left multiplication. By [18, Theorem 1.1], the set X (u, b)x
is non-empty if and only if [b] € B(G,{n}). Moreover [18, Theorem 1.1] says that for J C K another
o-stable type, the natural projection G(Qp)/Gs(Zy) — G(Qp)/Gx(Z,) induces a Jy(Q,)-equivariant
surjection

X(p;0) g — X (1, b)xc.

We will soon see that X (u,b)x can be identified with the set of F,-points of a perfect scheme, which
we will also denote by X (u,b)x.



MOD p POINTS ON SHIMURA VARIETIES OF PARAHORIC LEVEL 21

2.4.3. Let K be a o-stable type, let b € G(Q,) and consider the functor X (y, b)} on Aﬂ"zerf sending
R to the set of isomorphism classes of commutative diagrams of modifications of Gx-torsors on Dg

(2'4'1) 30*,30 i Bo

such that B : 0*& --» &1, considered as an element of Hkg (R), lies in Uyepdm({u}) Hkx (w)(R).
Here b is the modification of the trivial Gx-torsor 0*£% ~ £0 given by multiplication by b. We will
sometimes refer to By as a quasi-isogeny of shtukas from (&1, 31) — (£°,b).

Lemma 2.4.4. The morphism X (u1,b)}, — Grg that sends a diagram as in [2.4.1]) to By : & --» E°,
1s a closed immersion. Moreover it identifies

X (1,0 (Fp) C Grc(Fp) = G(Qy) /G (Zp)
with the affine Deligne—Lusztig set X (u, b))k from Section .

Proof. Consider the functor X (b) sending R to the set of isomorphism classes of commutative diagrams
of modifications of Gx-torsors on Dg

0*51 ***** > 51
(2.4.2) "o 60
o*E0 -y g0

as before, but now without the condition that 81 € U,ecadm(fu}),c Hkx (w)(R). As before, [19, the

discussion after Remark 3.5] tells us that X (u,b)) is a closed subfunctor of X (b), and the lemma
would follow if we could show that the map

f:X(b)—>GI‘K

sending a diagram as in (2.4.2)) to By : & --» &Y is an isomorphism. The map f is an isomorphism
because the map g : Grgx — X (b) sending 3o : & -+ £V to the diagram

with 81 = 50_1ba*ﬂ0 is an inverse to f.
We see that X (u,b)}(F,) is cut out from X (b)(F,) = G(Q,)/Gxk(Z,) by the condition that 8 €

Uweadm({u}) x Bki (w)(Fp), in other words, that
Bytvo*poe | Gr(Zp)iGk(Zy).
weAdm({u})

This is precisely the condition cutting out X (1, 0)rx € G(Q,)/Gr (Zy), and so we are done. O

From now on, we will write X (p1, b) i for X (u, b) by abuse of notation. It follows from [15, Lemma
1.1] and [56, Corollary 2.5.3] that X (u,b)x is actually a perfect scheme that is perfectly locally of
finite type.
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If b is o-conjugate to b, that is if b = g~ bo(g) with g € G(Qp), then X (11,0)rc =~ X (11,0 ) ¢ via the
map

0'*51 ***** > 51 o 51 ***** > 51
30*,30 3,30 = 30(9)0*/30 1980
o0 -ty g0 o0 -ty g0

We note that this map is nothing more than the action of g € LG(F,) on X (u,b)x C Gri via the
natural left action of LG on Grg. For b’ = b this induces an action of the closed subgroup F, C LG
on X (1, b) g, where Fy, is defined as the subfunctor of LG sending a perfect Fp-algebra R to the group

Fy(R) ={g € LG(R) | g~ 'bo(g) = b}.

The Fp—points of Fj, are in bijection with J,(Q,), where Jj is the algebraic group over Q, introduced
in Section 2.4.2

Lemma 2.4.5. Consider the morphism Oy : X(u,b)x — Shta k. {u},p), which sends a diagram as
in (2.4.1) to (&1,61). This morphism is Fy-invariant and induces an isomorphism of stacks in the
pro-étale topology

Shta i fuy,i5) = [Fo\X (1, 0) k] -
Moreover Fy, is isomorphic to the locally profinite group scheme Jy(Qp) associated to the topological
group Jy(Q) ]

Proof. The morphism 0y, is Fy-invariant, since the action of F, on X (u, b) i doesn’t change (&1, 81). For
a scheme T~ Shtq g 1,1.5], the set X (u,b) i (T') is the set of quasi-isogenies from (&1, 81) to (ER, br),
which is either empty or has a simply transitive action of the group F,(T') of self quasi-isogenies of
(2,br). In other words, we have shown that ©, is a quasi-torsor for Fy,. By |9, Theorem 1.2.1], for
any Gr-shtuka (€1, 1) € Shtg g 5)(T), the quasi-torsor of quasi-isogenies to (E9,br) has a section
pro-étale locally on T'. Thus the map Oy is a pro-étale torsor for Fj, and so

Shta i {uy,p) = [Fo\X (11, 0) k] -

It also follows from |9, Theorem 1.2.1] that F} is isomorphic to the locally profinite group scheme
Jp(Qp) associated to Jp(Qp). O

Corollary 2.4.6. The stack Shtg g g3, 75 non-empty if and only if [b] € B(G,{u}).

Proof. This is a direct consequence of Lemma [2.4.5] in combination with the analogous result for
X (p,b) i, which is |18, Theorem 1.1]. O

3. UNIFORMISATION OF ISOGENY CLASSES

In this section we will recall the construction of the Kisin—Pappas integral models of Shimura varieties
of Hodge type with parahoric level structure, and recall the construction of Hamacher—Kim of shtukas
on the perfections of their special fibers. We also discuss the change-of-parahoric maps constructed
by Zhou in [55], and show that the shtukas of Hamacher-Kim are compatible with these maps using
results of [43].

We then recall the results from Appendix [A] about the existence of CM lifts for Shimura varieties
with very special level, and use that to deduce the existence of CM lifts for arbitrary parahorics. Next,

8For a topological group B we define B as the functor on Aﬂ'ierf sending R to the group of continuous functions
| Spec R| — B, where | Spec R| is the underlying topological space of Spec R. When B is profinite this is representable
by an affine group scheme, and thus when B is locally profinite it is representable by a group scheme.
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we study how uniformisation ‘lifts’ along the change-of-parahoric maps. Concretely, we will show that
uniformisation of isogeny classes at Iwahori level follows from uniformisation at very special level if a

certain diagram of stacks on Affzerf is Cartesian.

3.1. Integral models of Shimura varieties. We recall the construction of the integral models of
Shimura varieties of Hodge type in [25]. Let (G, X) be a Shimura datum with reflex field E and let
{un} be the G(C)-conjugacy class of cocharacters of G¢ defined in [55, Section 6]. Let Ay denote
the ring of finite adeles and A? the subring of Ay with trivial p-component. Let U, C G(Q,) and

UP C G(A}}) be compact open subgroups, write U = UPU),,. Then for U? sufficiently small
GQN\X x G(Ap)/U

has the structure of an algebraic variety over C, which has a canonical model Shy (G, X) over the
reflex field F of (G, X). We will also consider the pro-varieties
Shy, (G, X) := @ShUpUp(G,X)
Ur
Sh(G, X) := @ShU(G,X).
U

3.1.1. Let V be a vector space over Q of dimension 2¢g equipped with an alternating bilinear form
. For a Q-algebra R, we write Vg =V ®q R. Let Gy denote the corresponding group of symplectic
similitudes and let Hy denote the set of homomorphisms h : S — Gyr corresponding to the Siegel
upper and lower half space, where S := Resc/g Gy, is the Deligne torus.

For the rest of this section, we fix an embedding of Shimura data ¢ : (G, X) — (Gy,Hy). We
sometimes write GG for G, when there is no risk of confusion. We will also assume for the rest of this
section that the following conditions hold

G splits over a tamely ramified extension of Q, and p 1 |m; (G9°)|.

Let G be a connected parahoric subgroup of G, that is, G = G, = G for some x € B(G,Qy), see Section
We will follow the notation of Section [2] to write G = Gk for some o-stable type K C S. By
[25, 2.3.15], after replacing ¢ by another symplectic embedding, there is a closed immersion Gx — P,
where P is a parahoric group scheme of Gy corresponding to the stabiliser of a lattice Vz, C V. Upon
scaling Vz,, we may assume VZVP C Vz,. This induces a closed immersion of local models

M(_lﬁr?,X - M71§7CHV ® Op
for every place v of E above p. Here the local models are as introduced in [55, Section 3|.

3.1.2. Let U‘e C GV(A?) be a sufficiently small compact open subgroup. Let Vz(p) = Vz, NV and
write GZ(p> for the Zariski closure of G in GL(VZ(p)), then GZ(p> ®z, Lp = Gr. The choice of Vi,
gives rise to a compact open subgroup Uy, C Gy (Qp) which gives the Shimura variety Shy,, (Gv, Hy)
of level Uy = U{jUV’p an interpretation as a moduli space of (weakly polarised) abelian varieties up
to prime-to-p isogeny, and hence an integral model .1, (Gv, Hy) over Z,), which is described in
[55, Section 6.3].

3.1.3. For the rest of this paper, we fix an algebraic closure Q of E, and for each place v of Q an
algebraic closure Q, together with an embedding Q — Q,. By |26, Lemma 2.1.2], we can choose U‘e
such that ¢ induces a closed immersion

Shy (G, X) — Shy,, (Gv, Hv)E

defined over E. The choice of embedding £ — @p determines a place v of E. Write O (. for the
localisation of Op at v, let E, be the completion of F at v and Op, the ring of integers of F,.
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We assume the residue field has ¢ = p" elements and as before k& will denote an algebraic closure of
F,. We define ./7(G, X)™ to be the Zariski closure of Shy/(G, X) inside 7, (Gy, Hy) ®z,, OF,(v)
and .#/(G, X) to be its normalisation. By construction, for UY C U compact open subgroups of
G(A?), there are finite étale transition maps Sy (G, X) = Fyry, (G, X) and we write S, (G, X) :=
@Uﬁ Sy, (G, X). Under these assumptions we have the following result:

Theorem 3.1.4 (|25] Theorem 4.2.2, Theorem 4.2.7). The Op, () scheme Sy, (G, X) is a flat G(A’;)—
equivariant extension of Shy, (G, X). Moreover Sy (G, X)oy, fits in a local model diagram

S0(G, X))oy,

N

yU(G’ X)OE,v Mg;;
where q is a G -torsor and w is smooth of relative dimension dim G.

Note that the main result of |[42] tells us that the integral model .#7;(G, X)) does not depend on the
choice of Hodge embedding.

3.1.5. By |26, 1.3.2], the subgroup GZ( , is the stabiliser of a collection of tensors s, € V% - Let
h: A — Su(G,X) denote the pullback of the universal abelian variety on .7, (Gv, Hy) and let
Vg := R! han 7. (p)s where hg, is the map of complex analytic spaces associated to h. We also let
V = R'h,Q° be the relative de Rham cohomology of A. Using the de Rham isomorphism, the tensors
sq give rise to a collection of Hodge cycles s, qr € V2. where Vg is the complex analytic vector
bundle associated to V. By [26}, §2.2], these tensors are defined over E, and in fact over Op (,) by
[25, Proposition 4.2.6].

Similarly, for a finite prime ¢ # p, we let V; = R'hg,Qp and V, = R} hy ¢t Zyp Where hy, is the generic
fibre of h. Using the étale-Betti comparison isomorphism, we obtain tensors s ¢ € Vé? and s, € V}?.
For x = B,dR,{ and z € Sy»ry, (G, X)(T) for some O (,)-scheme T', we write A, for the pullback of
A to T via x and sq « 5 for the pullback of s, . to T via x.

The image of  under Sy»y, (G, X) — S, (Gv, Hy) 0z, OF,(v) gives us a triple (Ag, A, e@v) where
(Az, A) is a weakly polarised abelian variety up to prime-to-p isogeny and e%v is a U{} level structure.
As in [26] 3.4.2], the level structure e@v can be promoted to a section:

(3.1.1) e% e I(T, IsomA,w(Vp(A),VAz;)/Up)
which takes s, to s, for £ # p.

3.1.6. Recall that F, is an algebraic closure of F, and Q, = W (F,)[1/p]. Let T € .%y(G, X)(F,) and
x € (G, X)(O) a point lifting T, where L/Q, is a finite extension.

Let ¢, denote the p-divisible group associated to A, and ¥, its special fiber. Then 7,9, is
identified with H}, (A, Z,) and we obtain I'g-invariant tensors sq ¢, € 1T,%V® whose stabiliser can
be identified with Gx. Let D, := (¥, ) be the contravariant Dieudonné module associated to the
p-divisible group ¢, 9. We may apply the constructions of |55, Section 3| to obtain g-invariant tensors
50,0,z € Dz, whose stabiliser group can be identified with G ®z, Zp.

This means that we can upgrade the Dieudonné module of A, to a Gx-shtuka over Fp, and this
gives a map (see |55, Proof of Axiom 4 in Section 8])

(3.1.2) yU(G X)( ) — ShtGK{u}( ),
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where {u} = {o(u;")}. It is a result of Hamacher-Kim (|14, Proposition 1], see [50, Poposition 4.4.1])
that there is a morphism Shg kur — Shtg () inducing (3 on F,-points, where Shg xp» is

the perfection of the basechange to k of ./7/(G, X H It follows from [43, Theorem 1.3. 4]. " that this
morphism does not depend on the choice of Hodge embedding and moreover can be upgraded to a
G(A%)-equivariant morphism

ShgyK = T&lShG,K,Up — ShtG,K,{p}a
Up

where G(A%) acts trivially on Shte k(-
It follows from [50| the discussion after Theorem 4.4.3] that the perfection of the special fiber of
Mg loc y can be identified with the closed subscheme Mll‘éc{ ) of the affine flag variety for Gx introduced

in Sectlon . Under this isomorphism, the right action of L™ Gy on Mll‘éc{ b which factors through

Gk, is 1dent1ﬁed with the Gx actio H on the perfection of ch " Thus the local model diagram of
Theorem [3.1.4] gives us a (perfectly smooth) morphism

Ak : Sha ke — [MII%?{#} /EK]

3.1.7. Fixn > 2 and choose m > 0 such that the action Ad, LTGx on Mllzcﬁ} factors through L™Gg

and such that m satisfies the assumptions of Proposition [2.3.4] Let Sht(GmI’(l){ } be the stack of (m)-

restricted shtukas of type {u} from Section and also consider the stack Sht(G K?{lic from Section

m If we compose the morphism Sh¢ k,yr — Shtg i () constructed above with the natural map
Shtg i {uy — Sht(c?ll’{l){u} we obtain a morphism

Sha ke — Sht(G K){H}

By [50, Theorem 4.4.3], the perfectly smooth map Ak : Shg ke — [MII%C{M} /G k] induced from the
local model diagram fits in a commutative diagram

ShG,K,Up E— Shtgn[’(l){u}

oL

MGy /G

where Sht(G K){ } [MIOC{ /9 G k] comes from the diagram in Remark [2.3.2l Moreover |50, Theorem

4.4.3] tells us that the map Shg g pr — Sht(G K){u} is perfectly smooth.
(m,n),loc

Recall moreover that there is a natural map Shtg g () — Shtg, ¢ (o) which induces a map Shg i, yr —

Shtgnlé1 ?{ IO}C When G is hyperspecial, then it is proved in [54, Proposition 7.2.4] that this map is per-

fectly smooth, and the proof adapts to the parahoric case as in the proof of [50, Theorem 4.4.3].

9The subscript K is used to signify the choice of o-stable type K C S corresponding to the parahoric subgroup U,.

OPappas and Rapoport construct a ‘local shtuka bounded by {u}’ over the diamond associated to the formal com-
pletion of % (G, X) and prove uniqueness results for this object. By |43 Example 2.4.9], this induces a Gx-shtuka over
the perfect special fiber of .9y (G, X)), which is of type {u} by the discussion in [43, Section 2.4.3].

HUHere we are writing G for the perfection of the special fiber of Gx, by abuse of notation.
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Remark 3.1.8. It has been pointed out to us by Manuel Hoff and Xinwen Zhu that the proof of
[54, Proposition 7.2.4] is not correct as written; the square in [54, top of page 113] does not commute.
The same error seems to be present in the proof of [50, Theorem 4.4.3]. Fortunately, the perfect

smoothness result that we will need is a consequence of the expected main result of the forthcoming
PhD thesis of Manuel Hoff |22].

(Gn}’é){ up to define the EKOR stratification

on Shg kv, see Section [2.3.11} In particular for w € FAdm({u}) we will write Shg i »{w} for the
locally closed EKOR stratum of She, xu». Since She g v — Shtg”;){u}
that the closure of Shg x pr{w} is given by

ShG7K7Up{j w} = U Sh(;’K’Up{’wl}

w’' <jw

We can use the perfectly smooth map Shg g yr — Sht

is perfectly smooth, we find

)

. (m,1
because the closure relations hold on Shta KAn}

3.1.9. Isogeny classes. Let x € She k,u»(Fp), then attached to x is an abelian variety A, over F,. We
write D, for the contravariant Dieudonné module associated to the p-divisible group ¥4, of A,; then
D, is equipped with a corresponding set of tensors sq 04, see Section @ Similarly, for ¢ # p, the
(-adic Tate module Tp.A, is equipped with tensors s ¢, € TpAS.

Two points x, 2’ € She k(Fp) are said to lie in the same isogeny class if there exists a quasi-isogeny
A, — Ay such that the induced maps D;[1/p] — D,/ [1/p] and VyA, @ Qp — ViAy @ Qg sends sq.0 47

t0 80,00 and Sq 05 0 Sq ¢4 for all £ # p. We write &, C Shg i (Fp) for the isogeny class of .
For x € Sh¢ k (F,) we let I, denote the reductive Q-group associated to x as in [55, Section 9.2]; it is a
subgroup of the algebraic group of self quasi-isogenies of the abelian variety A,. It comes equipped with

a natural map I, Az = G AP coming from the tautological basis of the prime-to-p adelic Tate-module

of A, given by (the inverse limit over U? of) (3.1.1). If we choose an isomorphism « : D, ~ Vz, ®z, Zp

sending Sq,0,4 t0 S ® 1, under which the Frobenius of I, corresponds to b € G (@p), then there is also
an induced map I, g, — Jp. Note that an isomorphism « as above always exists, by [55, Section 5.6].

3.1.10. Change of parahoric. Now let J C K be another o-stable type, let G;(Z,) =: UIQ C Up and
let U" = UPU),. We will use Shg jur to denote the perfection of the special fiber of /77 (G, X). By
[55, Theorem 7.1|, there is a proper morphism m;x : S/ (G,X) — (G, X) which induces the
obvious forgetful morphism on generic fibers and induces a G (A?)—equivariant map

lim %/ (G, X) = lim (G, X).
Upr Upr

We now recall the construction of the forgetful map from [55, Section 7.2]: There are facets f,§ of the
extended Bruhat-Tits building B(G,Qy) of Gg, such that U, is the stabiliser of § and such that U, is
the stabiliser of f'. Under the embedding 6 : B(G,Q,) — B(Gy,Q)) induced by G — Gy we choose
facets g, g’ containing 6(f) and 6(f') respectively, and we let M, C Gy (Q)) be the stabiliser of g and
M,, C Gy(Qp) be the stabiliser of g’. As in [55, Section 8.1], the facets g, g’ correspond to lattice chains
L and L in Vg, respectively, with £ a reﬁnemenﬂ of £; note that |55] writes £’ for what we call £
and vice versa.

Then for sufficiently small M?P C Gy (A?) there are moduli-theoretic integral models % s» M, (Gv,Hy)
and e, (Gv, Hy) over Z,). The former is a moduli space of £'-chains of (weakly polarised) abelian
varieties up to prime-to-p isogeny with MP level structure, as explained in [55, Proof of Axiom 1 in

12This means that £ and £’ are chains of lattices in Vg, and that every lattice in £ is also contained in £’.
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Section 8|, and the latter is a moduli space of L-chains of (weakly polarised) abelian varieties up to
prime-to-p isogeny with MP level structure. There is a natural proper forgetful map

et Sy (Gv, Hy) = S, (G, Hy)

which sends an £’-chain of abelian varieties to the underlying £-chain of abelian varieties.

Taking the direct sum of the lattices in the lattice chain £ (resp. L) we get a symplectic space V.
(resp. Vgr) and a lattice Vo z, (vesp. Virz,) in Vg, (resp. Vi g,). Let us denote the stabiliser of

Vez, (resp. Virz,) in Gy, (Qp) (resp. GVC,(Qp)) by Jp (resp. JI',).
Then there are Hodge embeddings (Gv,Hv) — (Gv,,Hv,) and (Gv,Hy) — (Gv,., Hy,,), which
take M, to J, and MI’) to J]’J respectively. These induce finite maps

yMPMI’)(GV7HV) — yJ/pJ;)(GVC,,'HVL,), yMpMp<Gv,'Hv) — yJPJp(GVu,HVL)

for some J? C Gy, (AZ}) and JP C Gv,, (A?) sufficiently small, which take an £'-set (resp. L-set) of
abelian varieties to the product of all the abelian varieties in the £’-set (resp. the L-set), equipped
with the product polarisation and level structure. It is explained in [55, Equation 8.1 of Section 8|
that our forgetful maps fit in a commutative diagram where all the horizontal maps are finite

S1(G X) —— Surany (Gv, Hy) @ O, o) —— F oy (Gv Hy) @ O ()
(3.1.3) JT"J,K lﬂ’ﬁ/,c
(G, X) —— SMr M, (Gy,Hy) ® OE,(u) — Sypy, (Gv, Hy,) @ OE,(v)-

3.1.11. Change of parahoric and isogeny classes. We set Shg j = @U@ Shg,jur and we let 7 :
Shg,; — Shg ik denote the G(A?)—equivariant map induced by 7;x. We now define isogeny classes in
Shg,(Fp) using the Hodge embedding (G, X) — (Gv,, Hv,,), as in Section Similarly, we define

isogeny classes in Sh¢ i (F,) using the Hodge embedding (G, X) — (Gyv,,Hy,). By |55, Proposition

7.7|, the forgetful map is compatible with isogeny classes in the sense that for z € Shg ;(IF,) we have
T (Sz) C Ir(e)- We will need the following refinement:

Proposition 3.1.12. Let z,y € Shg, j(F,) with the same image x € She kx(Fp). Then z and y lie in
the same isogeny class. In particular .7, = 1= 1(%,).

Proof. This follows as in the proof of [55, Proposition 7.7]. The point is that the two £’-sets of abelian
varieties associated to z and y have the same underlying L-set of abelian varieties, namely the one
associated to m(z) = 7w(y). Therefore there is a unique quasi-isogeny of L’-sets of abelian varieties
extending the identification of the underlying L-sets. This induces a quasi isogeny A, --» A, on the
products of the abelian varieties in the £'-set, and it can be checked as in the proof of |55, Proposition
7.7| that this quasi-isogeny takes the tensors for A, to the tensors for A,. O

We will also need the following lemma.
Lemma 3.1.13. The following diagram commutes:
ShG7J7Up _— ShtG,J,{,LL}

J |

She kur — ShtG’,K,{u}-

Proof. This is a consequence of [43, Corollary 4.3.2]. O
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3.2. CM Lifts. In this section, we will prove a corollary of Theorem This corollary is a slight
generalisation of Theorem

Corollary 3.2.1. Let Uz', C G(Qyp) be an arbitrary connected parahoric and suppose that there is a
connected Twahori subgroup U];/ contained in Uz,) and a connected very special parahoric subgroup U,
containing U,. Then each isogeny class of YUZ/)(G, X)(F,) contains a point x which is the reduction of
a special point on ShUZ/Q(G,X).

Proof. Choose a connected Iwahori subgroup U;’ C UI’, and a connected very special parahoric subgroup

Up D Uy as in the assumptions of the theorem. We first prove the theorem for Sy (G, X).
Let 2 € Sy (G, X )(Fp) and let 2 be its image in .77, (G, X )(F,). Then the isogeny class .#, contains
the reduction of a special point P € .y, (G, X)(Q) by Theorem This means that the Mumford—

Tate group of P is a torus and the same is true for any lift P” € Sy (G, X)(Q). Thus we find that
the inverse image of .#, under

Fiy(G.X)(F,) —+ S,(G, X)(F,)

contains the reduction of a special point. But by Proposition this inverse image is equal to
4, and so every isogeny class in YU;/(G, X)(Fp) contains the reduction of a special point. A similar

argument shows that every isogeny class in YUZ/) (G, X)(FF,) contains the reduction of a special point. [

3.3. Lifting uniformisation. From now on we let K C S be a o-stable type corresponding to a
connected very special parahoric. We let U, = Gk (Z,) and U, = Gy(Z,); note that U, is a connected
parahoric subgroup by Lemma In this case, the commutative diagram from Lemma [3.1.13]is

Shegg,ur — Shtgg ()

(3.3.1) l l

Shg kur —— ShtG,K,{u}-

The goal of this section is to prove the following result. Let x € Shg (Fp) and choose an isomorphism

D, ~ Vz, ®z, Zp sending sq,0,2 to o ®1. Let b € G(Qp) be the element corresponding to the Frobenius
of D, under this isomorphism.

Theorem 3.3.1. If for every sufficiently small compact open subgroup UP the diagram (3.3.1]) is Carte-
sian, then for z € yU;(G,X)(Fp) with associated element b € G(Qy) there is a G(A?)—equivam'ant
bijection

L(Q\X (1, 0)(Fp) x G(AZ}) — S
3.32. Letz e Sy (G, X)(F,) with image z € .7, (G, X)(F,,) and let b € G(Q,) be as in the statement
of Theorem [A:4.5] Then Theorem gives us a map of sets

GUBR) x X(1.0)1c(Fy) = 7.

and Lemma W gives us a map of stacks Oy : X (i, b)x — Shtq i fu3,8]-

Lemma 3.3.3. The following diagram of groupoids commutes

G(AR) x X (1, b) e (Fp) —=— X (11, ) ()

| 5

B > ShtG,K,{u},[b] (ﬁp)
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Proof. This follows from the compatibility of the uniformisation map with the ‘joint stratification’
Sha,x,ur (Fp) = Shte i {3 (Fp), as discussed in the proof of Axiom 4(b) in Section 8 of [55]. O

Lemma 3. 3 4. Let 7, be the inverse image in Shg g(Fp) of #p C Shg i (Fp). If the assumption of
Theorem 1| holds, then there is a G(Ap) equivariant bijection

o = L(Q\X (1, 0)g(Fy) x G(A]).

Proof. Taking the inverse limit over UP of the Cartesian diagram of (3.3.1), we get the following
G(A?)—equivariant Cartesian diagram of groupoids

S — Shtg g 1,0 (Fp)

(3.3.2) J l

fw E— ShtG7K7{u}(Fp)'

Theorem gives us a bijection I, (Q)\X (i, b)x (Fp) x G(AZ}) — Z, and Lemma [2.4.5| gives us
equivalences of groupoids

(X k(F _
ShtG,K,{,u} (Fp) ~ [W] , ShtG7@7{#}(Fp) ~

Lemma tells us that we can identify (3.3.2)) with

e )

o[ X (,0)0 (Fp)
/Jix ’ [ Jb(Q?p)p ]
L(Q\X (1, 0) (Fp) x G(AY) [X(mbm@p)}
¢ ’ p f T5(Qp) )

such that the bottom map is induced by the projection map X (u,b)x (Fp) x G(A?) — X (p,0)k (Fp)

and the right vertical map is induced by the natural map X (1, b)y(Fp) — X (, b) i (Fp,). But now it is
clear that there is a G(A?)—equivariant bijection

o = Lo (QN\X (1, 0)g(Fp) x G(A).

0
Proof of Theorem (3.5.1. The theorem is a direct consequence of Lemma which proves uniformi-
sation for _#,, and Proposition [3.1.12] which proves that ¢, = .7,. ]

3.4. Uniformisation and connected components. Define G(Q)y+ = G(Q) N G(R)4, with G(R)+
the inverse image of the identity component (in the real topology) of G*(R) under the natural map
G(R) — G*(R). Let p: G — G be the simply-connected cover of the derived subgroup of G;
we will sometimes conflate groups like G*¢(Q) and GSC(Ag) with their images under p by abuse of
notation. Consider the set

= Im G(Q)\G(A1)/U7T,,

Now we have p(G*(Q)) C G(Q)+ since G**(R) is connected, and strong approximation for G* away
from oo, see [44, Theorem 7.12|, tells us that the closure of p(G*(Q)) in G(Ay) contains p(G*(Ay)).
Moreover, the subset G(Q)4+p(G*(Ay)) is closed in G(Af) since (G, X) is of Hodge type, see |7, Section
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2.0.15]. This means that G(Q)+\G(Af)/p(G*(Ay)) is Hausdorff, and we can therefore deduce from
[37, Lemma 4.20] that the natural map
G(Ay)
G(Q)+\ /Up = 7(G)
Tp(Ge(Ag) Y

is a homeomorphism. We see that 7(G) is an abelian group since p(gs(ci%gf)) is.

3.4.1. By Lemma below, we may make the identification

_ ()
m(G) = G(Q)+\ | m(G)T x P(T(AI})) .

In particular there is a natural surjective group homomorphism m;(G)g x G(A’}) — 7(Q).

Lemma 3.4.2. Let G be a connected reductive group over Q, and let G be a parahoric group scheme
for G. Then there is a natural isomorphism

G(Qp)
P(GSC(QP)) ) g(Zp)

Proof. Recall that we have the surjective Kottwitz homomorphism kg : G(Q,) — 71(G); with kernel
given by p(G*(Q,)) - T(Z,) = p(G*(Qy)) - G(Z,) (see [41, Lemma 17 of the appendix|), where T is the
connected Néron model of a standard torus T’ of G. Recall moreover that kg restricts to a surjective
map G(Qp) — m(G)7 by |29, Section 7.7]. Thus when G = T is a torus, we have a short exact
sequence

~ 7T1(G)?.

0—=>T(OL) = T(L)— m(G)r — 0,

that remains exact upon taking o-invariants, proving the lemma for tori. If G4°* is simply connected,
then there is a canonical identification 7 (G) = m(G?"), where G®" is the maximal abelian quotient
of G. We can consider the morphism of short exact sequences

1 — G¥*'(Q,) — G(Qy) —— G*(Q,) —— 1

| | |
I —— m(G)f —— m(G*)7 —— 1.

The lemma now follows from the well known fact that the image of G(Z,) in G**(Q)) is equal to D(Z,),
where D is the connected Néron model of G®P. For general G, we can reduce to the case that GI°' is

simply connected using a z-extension argument, see the proof of [41, Lemma 17 of the appendix| or
[29, Section 7.7]. O

3.4.3. Define (cf. |7, Section 2.1.3])
#(G, X) = limmo(Shy (G, X)g) = lim GQ)\ (ro(X) x G(Ay)/UPU).
ur Ur
This is a quotient of

lim G(Q)\ (mo(X) x G(A7)/U),
U

on which G(Ay¢) acts through the abelian group G(Ay)/p(G*(Ay)), again by strong approximation for
G*¢ away from infinity. By the discussion above, this induces an action of G (AZ}) x m(G)] on w(G, X)
which makes it into a torsor for 7(G).
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Recall that U, is a very special parahoric, which implies that the integral model “»y, (G, X) has
locally integral special fiber; see |25, Collary 4.6.26]. Then |36, Corollary 4.1.11] tells us that for all
choices of UP, for each finite extension F' of the reflex field E and any place w of F' extending v, the
natural maps

mo(Shyry, (G, X) @k F) < m0(Suru, (G, X) @0y () OF,w)) = T0(Sha,k,ur @k(w))

are isomorphisms. Thus there is a natural G(Ag)—equivariant isomorphism mo(Shg x) — (G, X),
which turns 7(Shg k) into a torsor for m(G) and equips it with an action of G(A%) x m(G)7.

3.4.4. As before Gk denotes a connected very special parahoric group scheme. Let z € Shg x (Fp)

and b € G(Q,) the associated element that is well-defined up to Gx(Z,)-conjugacy. The Kottwitz
homomorphism induces a natural map

K : X(,u,b)K — GI‘K — ’/T()(GI‘K) ~ 7T1(G)],

with image cp), + m1(G)7 C 71 (G)r, see [19, Lemma 6.1]. As in [55, Section 6.7] we have 1 €

X (p,0) i (Fp), which implies that the coset cpy) , + 71(G)7 contains 1 and is thus equal to m1(G)7. In
particular, the map x takes values in 71(G)7. Theorem gives us a G(A?)—equivariant map

iz X (1, 0) i (Fp) ¥ G(A%) — She k (Fp),
sending (1, 1) to z.

Proposition 3.4.5. Consider the composition X (u,b)k (Fp) x G(AZ}) — Shg k (Fp) — mo(She k) =
m(G, X), and let z be the image of x in w(G, X). Then the image of (y, g*) in w(G, X) is given by

(K(y)’gp) )
where - denotes the natural action of m(G)7 x G(A’;) on m(G, X) constructed above.

Proof. By the G(A?)—equivariance of the map 1., it suffices to prove the theorem for g? = 1 or for

the map X (u,b)x(Fp) — Shg x(Fp). The map X (u,b)x(Fp) — Shg i (F,) upgrades to a map of
perfect schemes X (u,b)k — Shg ik by the proof of [20, Proposition 5.2.2]. Therefore the image of
y € X(u,b)g(Fp) in (G, X) only depends on the connected component that y lies in. Thus the result
is true for a union of connected components X (u,b)} of X (u,b) k. Moreover, the result is clearly true

for y = 1.

Now we follow the proof of Proposition [A74.3] and freely use the notation from that proof: Let
M C Gq, be the standard Levi subgroup given by the centraliser of the Newton cocharacter vp,. By
Theorem there exists A € I, 5 »7 and an element

g e X(H’ b);{ N XM()" b)M
We may then replace x by i,(g) to assume that b € M (Qp) and furthermore that b = 7 where 7, € Qus

corresponds to ks (b) € w1 (M);.

Arguing as in the proof of we can find a finite extension L of @, and choose an (M, p,)-
adapted lifting ¢ /Oy, of ¢4, (cf. |55, Definition 4.6]) which corresponds to a point # € ., (G, X)(Or).

The construction in |55 Proposition 5.14| gives us a map

v M(Qp)/M(Zy) — XM (N D)k,
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whose composition with X (\,b)x,, — X (i, b)x fits into the following commutative diagram
M(Qp) r X (1, )k (Fp)

~

1 (G)(;v

where the left diagonal map is the composition M(Q,) = G(Qp) — m1(G)J. Choose a lift of Z to a

9

point z € Sh(G, X)(C), where C is an algebraic closure of Q,. Then by construction the map ¢ fits
into the following diagram (compare with the diagram in |27, Corollary 1.4.12|)

MQp) — S, (G, X)(O¢)

| |

X(M, b)K(Fp) —_— ShgyK(Fp).

Here the top horizontal map is given by the (Hecke) action of M(Q,) C G(Qp) on z € Sh(G, X)(C)
followed by projection to back to .7, (C) and extending to .7, (G, X)(O¢).
We see that elements g € X (11, b) i (F,) in the image of M (Q,) — X (11, b) i (F,) satisfy the conclusion

of the proposition. Moreover, this means that the result holds for all points g € X (1, b)x (IF,) lying in

a connected component of X (4, b) intersecting the image of the map M (Q,) — X (u,b)k (F,). But
the map
M(Q))/M(Zy) — mo(XM (A bicy,)
is surjective by [55, Proposition 5.19] and moreover
1o (XM (A, D)y ) — mo(X (1, 0) )
is surjective by Theorem [A.1.3] Thus every connected component of X (u,b)x contains a point in the

image of M(Qp,) — X (u,b)k (IF,), and so we are done. O
Corollary 3.4.6. Let 7 € Adm({p}) be the unique element of length zero. Then

She g.u» (1) = T0(Sha,x,uv)
18 surjective.

Proof. It suffices to prove this for the analogous map Sh¢ ¢(7) — mo(Shg k). Since Shg () is con-
tained in the basic locus we can use [55, Proposition 6.5(i)| to produce for € Sh¢ ¢(7) a uniformisation
map

X(u,b)g x G(A}) — Shg g
which, as in |55, proof of Axiom 5|, restricts to a map
ip: X(p,0)g(1) % G(A?) — She (7).
Moreover, the following diagram commutes (by construction, see [55, Proposition 7.8])

7

X(p,b)o(r) x G(A}) —— Shgp(7)

! !

lrg o ()
X(u,b)k x G(AR) =" She .

Since X (i, b)p(7) C X (u,b)p is Jp(Qp)-stable, it follows that its image in X (p,b) g is Jp(Qp)-stable.

Thus its image surjects onto m1(G){ via k, because J,(Q)) surjects onto 71 (G)7 since b is basic, see
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Lemma The result now follows from Proposition and the fact that m1(G)7 x G(A}) acts
transitively on mo(She i ). O

Corollary 3.4.7. For w € Adm({u}), the map
Sh¢ p.u» (w) — mo(Sha,x,ur)

18 surjective.

Proof. By |16, Theorem 4.1], this follows from Corollary O

4. THE CARTESIAN DIAGRAM

Let the notation be as in Section [3] in particular G is a connected very special parahoric group
scheme. Define a sheaf Sh¢ g ;7» via the following fiber product diagram

ShG7®7Up —_— Sht07@7{u}

(4.0.1) l l

Sha k,ur —— ShtG’K’{“}.

In particular, @G&Up is Shg . from the introduction. Proposition [2.2.15| tells us that §F1G7@7Up is
(representable by) a perfect algebraic space which is perfectly proper over Shg i yr. The universal

property of the fiber product gives us a morphism ¢ : Shg g r — @G’@,Up and the goal of this section
is to show that ¢ is an isomorphism, under some hypotheses.

In Section Hwe will show that ¢ is a closed immersion. In Section We will show that éTlG,(D,UP is
equidimensional of the same dimension as Shg x,y». In Section @ we will show that each irreducible

component of §}\1G’®7Up can be moved into Shg g ;7» using prime-to-p Hecke operators. We prove this by
degenerating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport—Zink
uniformisation of the basic locus.

4.1. The natural map is a closed immersion. Because the morphism Shg x — Shtg g (4} 18
G(A?)—equivariant, see [43, Theorem 1.3.4], we can form Shg g y» for every choice of prime-to-p level
subgroup UP. Then there is an induced action of G(AZ}) on Shg g := lim  She g e, such that the
natural maps Shg gy — Shg g and Shg g — Shg k are G(A?)—equivariant.

4.1.1. Let P, P’ be the parahoric group schemes with P(Z,) = M, and P'(Z,) = M,), see Section

3.1.10l Let Shg,, p/ a» and Shg,, p pe be the perfections of the geometric special fibers of the schemes
(introduced in Section [3.1.10)

Smrm (Gv, Hy) ®z,,) Opp  and  Fuen, (Gv, Hy) ®z,,) Ok,
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respectively. Now consider the following commutative diagram deduced from (3.1.3]) (which is commu-
tative by [43, Theorem 4.3.1]).

ShG’®7Up —_— ShG’Q]’Up a ShtG,@,{;L}

Shey v » Shtgy pr {u}

(4.1.1)

Sha, ke

2}

=
Q
=
o
=
=

N T~

Shay p,av Shtay P, {u} -

Lemma 4.1.2. The front face of the cube, that is, the square involving Shg,, pr yme, Shta, pr 141
Shay, p.vr and Shtg,, p 1,0 s Cartesian.

Proof. The stack Shtg,, pr 1,y is{ﬂa moduli stack of £'-chains of (polarised) p-divisible groups and
the stack Shtg,, p (4} is a moduli stack of £-chains of polarised p-divisible groups. The natural map
Sheay pr v — Shtg,, pr f,) sends an L'-chain of abelian varieties to the corresponding £’-chain of
p-divisible groups. The map Shg, p vr» — Shtg,, p () has a similar description. Moreover, the map
Shtg,, 77 {uy — Shtg, p(u) sends an L'-chain of (polarised) p-divisible groups to the underlying £-
chain of (polarised) p-divisible groups.

The statement of the lemma now comes down to the following claim: Given an £-chain A, of (weakly
polarised) abelian varieties, an £'-chain X/ of (polarised) p-divisible groups and an isomorphism from
A[p™], to the underlying L-chain of X, then there is a unique L£'-chain of abelian varieties Aps
with underlying £-chain given by A, and with p-divisible group A[p™], = X/. This claim follows
from the following simpler claim: Given an abelian variety A and a quasi-isogeny of p-divisible groups
f: A[p>™] — X, there is a unique triple (B, «, g) where B is an abelian variety, where « : B[p®] — X
is an isomorphism and ¢ : A --+ B is a p-power quasi-isogeny such that a o g = f. The proof of this
simpler claim is explained in |46, Section 6.13]. O

Lemma 4.1.3. The dotted arrow in (4.1.1)) exists.

Proof. This is an immediate consequence of Lemma and the universal property of the fiber
product. O

Proposition 4.1.4. The morphism ¢ : Shggpyr — §1\1(;,@7Up induced by the universal property of
Shg g ur 1s a closed immersion.
We start by recalling a lemma.

Lemma 4.1.5. If f : X — Y is a perfectly proper morphism between pfp algebraic spaces over ﬁp that
induces a bijection on IFp-points, then f is an isomorphism.

Proof. This follows from |2, Corollary 6.10] and its proof. O

Proof of Proposition[{.1.J The map ¢ is a morphism of perfect algebraic spaces that are perfectly
proper over Shg g yr, and ¢ is therefore perfectly proper; in particular, the image of ¢ is closed.

13To be precise, the stack Shta,, p,{u} is a stack of £'-chains of polarised Dieudonné modules. By |34, Theorem 1.2,
for a perfect ring R there is an equivalence of categories between £'-chains of polarised Dieudonné modules over W (R)
and L'-chains of polarised p-divisible groups over Spec R, which gives the desired description of Shtg,, p/ ;.1 (R).
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Let Z C §1\1G’@7Up be the image of ¢, equipped with the reduced induced scheme structure, then

t 2 Shgpur — Shggpe factors through Z because Shg g p is reduced. We want to show that ¢ :
Shg g y» — Z is an isomorphism, and by Lemma it is enough to show that it induces a bijection
on F,-points. Since ¢ is surjective, it suffices to prove injectivity.

Now [55, Corollary 6.3] tells us that a point 2 € Shg g »(F,) is determined by its image in

Shea,, p/.m»(Fp) and the tensors in the Dieudonné module of its p-divisible group. The tensors are de-
termined by the image of # in Sht¢ g 1,3 (Fp). By Lemma m, the morphism Sh¢ g » — Shey, P are

factors through §}\1G”®7Up and so the image of x in Shg g yr(Fp) remembers both the image of z in

Sha,, pr,m# (Fp) and the image of @ in Shtg g 1,3 (Fp); the lemma is proved. O

Lemma 4.1.6. The morphism f : @07@7Up — Shg,, pr.m» constructed in Lemma is finite.
Proof. By the proof of Proposition there is a commutative diagram

ShG,@J]p L) ShGV77D/7Mp

(4.1.2) lﬁ l"

!
ShgyK,Up E— ShGV,ijp

with f’ finite. It suffices to show that f is quasi-finite, since its source and target are perfectly proper

over Shg,, p ap. We will show that for « € Shg i e (F,) with image y = f(z) the map
fre7M @) = x )

is injective, which implies the quasi-finiteness.

To prove this injectivity on fibers we return to the commutative cube from Section [4.1.1] see equation
The square involving the four objects with subscript GG is Cartesian by construction, and the
square involving the four objects with subscript Gy is Cartesian by Lemma Since Cartesian
squares induce isomorphisms on fibers of maps, the injectivity of the map on fibers in can
instead be proved for the square

Shtgﬂ)’{u} e ShtGV P Au)

| |

ShtG,K,{u} S ShtGV,P,{u}-

Moreover, since the spaces of shtukas of type {u} sit inside the spaces of all shtukas, we can reduce to
showing the injectivity of the map on fibers for

Shtq@ — Shtg,, pr

J |

Shtqg,x — Shtg, p.
Recall from the proof of Corollary [2.2.11| the Cartesian diagrams (equation ([2.2.2)))

ShtG,(i) — Shtg i Shtg, pr — Shtg, p

| | | !

BL+g@ —_— BL+QK, BL+PI e BL+P,
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that fit into a commutative cube that we will not draw. This reduces the problem to showing the
injectivity statement for the map on fibers in the diagram

BL"Gy — BL™P’

| !

BLTGx — BL*P,

which comes down to showing injectivity of the map of partial flag varieties
LTGxk . LtPp
L*Gy L+tPpP
This last statement follows from the fact that the intersection of LTP’ with LTGf is equal to L*g@.

This is true by construction of P, P’ and the fact that Gk and Gy are connected parahoric subgroups
(the first by assumption, the second by Lemma [2.2.4)). O

4.2. A perfect local model diagram. Consider the composition (the last arrow comes from the

diagram in Remark [2.3.2))
<IN m,1 oc =
ShG7@7Up — ShtG,@7{M} — Sht(G,Q),{)u} — [M}A{M} /g@} .
We will think of this as a local model diagram for §I\1G’@7Up.

Proposition 4.2.1. The morphism é?lG’@’Up — {M%Of{:#} /?@] is weakly perfectly smooth and é?lGJb’Up

is equidimensional of the same dimension as Shg g v

Proof. We will use the results of Section [2.3] Fix n > 2 and choose m > 0 such that the action
Ad, LTGg on MII(;C’Z factors through LGy and such that m satisfies the assumption of Proposition
2.3.4. As explained in Section the natural morphism

(m,n),loc
G, K {n}

is perfectly smooth. Combining this with the discussion in Section [2.3.10, we find that (after possibly
increasing n) the composition with the natural map

Shg, k,ur — Sht

loc,00
Sht(m,n),loc ker FY\ MK,{,u}

Gt 7 | TAd, LG

is weakly perfectly smooth. Proposition 2.3.4] implies that the right square in the following diagram is
Cartesian

—~ . ker v\ M%ﬁ:?
She p,u» g ShtG,Q),{u} ’ Ad, Hp,

(4.2.1) l l l

kery\ M
She,kur —— Shtg k. {u) ’ [ Ad, erg’if}} '

Since the left square is Cartesian by construction, it follows that the outer square is also Cartesian.
Moreover, Lemma tells us that the stack in the bottom right corner of (4.2.1)) is equidimensional.
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We know that Shg i py» is also equidimensional and that the map

loc,0c0

Sh - | —2

G,K,UP Ad, LG
is weakly perfectly smooth. Thus by Lemma [2.1.16] this map must be weakly perfectly smooth of
constant relative dimension M. Because the diagram in is Cartesian, it follows that the natural
map

loc,00
ker v\ M@,{u}

Sheour =\ =34, @,
is also weakly perfectly smooth of constant relative dimension M. By Lemma [2.3.6] both stacks in
the rightmost column of (4.2.1)) are equidimensional of the same dimension. We deduce from Lemma
that ShG p.ur 18 equidimensmnal of the same dimension as Shg i yr and thus equidimensional
of the same dimension as Shg g ¢/»-

After possibly increasing m, we may choose 0 < m’ < m and invoke Lemma which tells us
that the natural map

ker Moo ]
WMoy | gptm' D

Ad, H,, G0, {u}

is weakly perfectly smooth. It follows from |50} Proposition 4.2.5| that the natural map

(m’,1) loc
Sht{frng = [ MG /9]

is weakly perfectly smooth. Therefore the map A ShG p,ur — {Mm () / g@] is a composition of weakly
perfectly smooth maps, and hence weakly perfectly smooth. O

4.2.2. For w € Adm({u}), we define the Kottwitz—Rapoport (KR) stratum §1\1G,@7Up (w) to be the
inverse image of the locally closed substack

My (w)/Go| < (M) /Gol
under the weakly perfectly smooth map \ : §EG7@7U;¢ — [Mg’? u} /Gq,} Similarly, we define
(4.2.2) Shepur(Sw) = | Shepur(w),
w' <w

which is the same as the closure of @07@,(];7 (w) because ) is open and since the closure relations hold
on Mé)(jf{lu}, see Section [2.2.12

Corollary 4.2.3. For w € Adm({p}), the closure §T1G7@’Up(§ w) has dimension {(w) and is locally
integral.

Proof. Let d = Dim Sh¢ g ;p = Dim M%ﬁu}. Then the local model M%ﬁ y 1s the union of M%DO‘{: }( w)
for w € Adm({u}) of length d, and for such w the KR stratum Mlﬂoiu}(< w) is equidimensional of



38 POL VAN HOFTEN

dimension d and stable under the action of G@. Using 5\, we see that

Shepwr = |J  Shepur(<w),
weAdm({u})
f(w)=d

and since éﬁ(;’@,m is equidimensional of dimension d, it follows that for w with ¢(w) = d we have that

@G,@m(g w) is equidimensional of dimension d = ¢(w). We can now apply Lemma [2.1.16|to deduce

that X is weakly perfectly smooth of relative dimension 0. We can apply Lemma [2.1.16|again to deduce
the dimension results for Sh¢ g y» (< w) for arbitrary w, from the dimension results for Mbo‘{j (S w)
from Section [2.2.12)

The morphism §T1G7®7Up — [Mb‘?i ) /@@] is (by definition) the same as a diagram

She 9,0
e s
She.,u Mgﬁu}’

where s : §}\1G7@7Up — §}\1G707Up is a Gy = L'Gy-torsor. To show that the local rings of §?1G7@7Up(§ w)
are integral, it suffices to check this after the perfectly smooth (in particular fpqc) cover s. Since

t: §}\1G’@7Up(é w) — Mg’? . (S w) is weakly perfectly smooth, the result follows from Lemma/2.1.100 [
We now give a corollary of Lemma

Corollary 4.2.4. For w € Adm({u}), the KR stratum g?lG,Q),Up (w) is quasi-affine.

Proof. Section [3.1.10] and in particular equation (3.1.3) shows that there is a commutative diagram
where all the horizontal maps are finite

(G X) —— Saurany (Gv, Hy) © Op o) —— Sy o (Gv Hy,) @ Op (v

o i

(G, X) —— Py, (Gv, Hy) @ O () —— Fp, (G, Hy,) @ Op (1)
Using Zarhin’s trick as in [50, Remark 2.1.4] or |27, Section 1.3.3]), there is moreover a finite map
yJ,pJI,) (Gv,, Hv,,) = FLorq,(Gyr, Hyn), where V" = Vg?4 o V5 and where " is given by a certain
explicit matrix. Here @), corresponds to the self dual lattice V@‘; ® V5% and QP C GV//(Afc) is

";p
sufficiently small. By Lemma the pullback € of the (ample) Hodge bundle from the perfection

of yQPQp,Fp(GV"’/HV”) to Shg gy is ample.
By construction, see Lemma the left square in the following diagram commutes

Shepur —— Shay prar —— Foug, 5, (Gvr, My )P

! i !

Sht g,{uy — Shtgy P fuy ——— Shtg,, Q{0 -

The right square moreover commutes because Zarhin’s trick is given by a morphism of Shimura data,
and then we can use [43, Corollary 4.3.2].
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The arguments in the proof of [50, Theorem 3.5.9] now show that the restriction of £ to the KR
stratum §}\1G7@’Up (w) for w € Adm({u}) is torsion, from which it follows that g?le@’Up(w) is quasi-
affine. To elaborate, their arguments show that the Hodge bundle on yQPQP,FP(GV”’ ’Hvu)perf comes
via pullback from a line bundle F on Shtg,,, g, {4}- They then show that if we pull back F to Shtg g 1.}
and restrict to a KR stratum, that the resulting line bundle is torsion. The same therefore holds for
the restriction of & to §I\1G7@,Up (w), which implies that §}\1G’@7Up (w) is quasi-affine. O

4.3. Connected components of closures of KR strata. The goal of this section is to understand,
for w € Adm({p}), the fibers of

WO(éEG’&Up(g w)) — mo(She, k,ur).

Here §}\1G’@7Up(§ w) is the closure of the KR stratum §1\1G7@7Up(w), see equation (4.2.2)). We will
eventually reduce this to understanding the fibers of

ShG 0, Up(T) — Wo(ShG K Up)
where 7 € Adm({u}) is the unique element of length zero. To make this reduction, we will show that
each connected component of ShGQ) ur(< w) intersects ShGQ yr(7). This will require us to assume
that either Shyy (G, X) is proper or that Gg, is unramified. More generally, we require that Conjecture
4.3.1| below holds. Recall that there are EKOR strata Shg g pr{w} for w € EAdm({u}), see Section
% and Section with closures Shg, i pr{=< w}.

Conjecture 4.3.1. If V is an irreducible component Shg i yr{=< w} for some w € EAdm({u}), then
V intersects the unique 0-dimensional EKOR stratum Shq g uyr{7}.

Remark 4.3.2. When G is hyperspecial, then this Conjecture is |53, Proposition 6.20]; the assump-
tion made in the statement of this proposition is proved in [1|]. When Shy (G, X) is proper, we will
circumvent the conjecture using Lemma [£:3:4] below. This is where the ’either unramified or proper’
assumption in Theorems [2] 3] and [ comes from.

4.3.3. We start by proving a lemma.

Lemma 4.3.4. Let Z be a connected component of §}\IG’®7Up(S w). Suppose that there exists a KR
stratum Sheg g e () such that Z N She g yr () is non-empty and such that Shg g » (< x) is perfectly
proper over Speck. Then Z intersects Shg g v (7).

Proof. Let @G,@’Up (x) be as in the statement of the lemma. Then there is an 2/ < x of minimal length

such that §1G70’Up ("YNZ # 0, and it suffices to prove that this length is equal to zero. The minimality
tells us that

(4.3.1) She g0 (2') N Z = Shg g (<a) N Z,

since gﬁg@y;;(ﬁ ')\ g?lGJZLU;; (2') is a union of KR strata associated to ” € Adm({u}) of length
strictly smaller than z’. Next, we note that Z N é?lg}@}m (') is a union of connected components of
éEG,@,UP (2'), because §1G70’Up (2') C é?lG’@’Up(S w) and so connected components of @G’mljp («') are
either disjoint from Z or contained in Z.

Since §}\1@7@’Up (2') is quasi-affine by Corollary we find that §T1G7@’Up (2') N Z is quasi-affine.
Moreover implies that é?lGﬂ’Up (') N Z C Shg g pr(< x) is closed, hence perfectly proper over
Speck. Therefore éTlG7®’Up (') N Z is perfectly proper and quasi-affine, and thus zero-dimensional.

Since it is a union of connected components of §I\1G7@’Up (2'), it follows from Corollary that 2’ has
length zero and must therefore be equal to 7.
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We will deduce the same result from Conjecture when the Shimura variety is not proper.

Prop051t10n 4.3.5. If Conjectur’e [4.3.1) holds, then for w € Adm({u}) every connected component Z
of ShG o,u» (< w) intersects ShG o.up(T).

First, we prove two lemmas.

Lemma 4.3.6. Let Z C §EG7@7U;}(§ w) be a connected component. If x € Adm({u}) is of minimal
length with the property that Z N She g yr(x) # 0, then x is o-straight in the sense of [19, Section 1.3].

Proof. Arguing as in the proof of Lemma above, we see that the intersection Z N §1’\1G7@,Up (x) is
a union of connected components of §F1G7@7Up (x). Let V' be one of these components, then V' is closed
in gEG o,ur(< x) as in the proof of Lemma Moreover, V is actually a connected component of
ShG 0, Up(< x); it is an irreducible component for dimension reasons and thus a connected component

since ShG o,ur(< x) is locally integral (see Corollary -
Let z € V(F,) with image 7(2) € Shg k,u»(Fp), and consider the uniformisation map

in(z) : X (11, b) K (Fp) = She kv (Fp),
centered at 7(z), where b corresponds to 7(z). By the proof of |20, Proposition 5.2.2] we can upgrade
this to a morphism of perfect schemes ir(,) : X(p,b)k — Shg k,yr. As in the proof of Theorem
see the discussion in Section [£.3.8] below, it follows that there is an induced map
=+ X(p,0)g = Shagur
whose image contains z. Since the uniformisation map is compatible with the KR stratification, this
restricts to a map
X, b)g(< ) = She o (< @)

whose image contains z. This means that there is a connected component Y of X (u,b)y(< x) that
maps to V'. Now [19, Theorem 4.1] tells us that there is a o-straight element 2 <z in Adm({u})
such that Y N X (p, b)g(2’) # 0. In particular, She our(@) NV # 0 and so Shgg v (2') N Z # 0. Since

2 has been chosen to be minimal with the property that éTIGJZ)’Up (")YNZ # 0, we see that 2 = 2’ and
so x is o-straight. O

Lemma 4.3.7. Let x € Adm({u}) be o-straight. Then there is y € KAdm({u}) such that the natural
map ShGQ) vr(w) — Shg k,ur factors via a finite étale map ShG’@,Up( w) — She k,ur{y} and such that

U(y) = t(w).
Proof. By the proof of [16, Theorem 6.17], there is an element v € W such that y := vzo(v)~! lies in
KAdm({p}) and such that Uy) = L(x). Tt fBHOWb from [16, the discussion prior to Theorem 6.10] that
the image of Shtg g 1,1 (2)(IFp) in Shtg i (Fp) is equal to Shtg k10 {y}(Fp E Since KR strata and
EKOR strata on g?le@’Up and Shq i y» respectively are defined as the inverse images of KR strata and
EKOR strata in Shtg g 1,3 and Shtg k (), and because these strata are determined by their F,-points,
we deduce that the image of §1\1G7@’Up (z) — She kur is equal to Sha kur{y}

To prove that the induced map is finite étale, we may use diagram (4.0.1) to reduce to checking
finite étale-ness of Shtq g ¢,3(w) — Shtg g 1,3{y}, and then Lemma to reduce to checking this

for X (p,b)p(w) — X (1, b)k{y}. The latter holds because J,(Q,) acts transitively on X (u,b)g(w)(Fp)
by |19, Theorem 5.1], with stabiliser a compact open subgroup, cf. |56, Proposition 3.1.4|, and the

HMRecall that for y € Adm({x}) we use {y} to denote the corresponding EKOR stratum, see Section [2.3.11
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same holds for X (p,b) x{w}(F,). Thus both X (u,b)g(w) and X (u,b)x{y} are isomorphic to infinite
disjoint unions of SpecF, and the map X (u,b)x(w) — X (u,b)k{y} is quasi-finite. It is not hard to
see that this implies that X (u, b) g (w) — X (u, b)x{y} is finite étale. O

Proof of Proposition[{.3.5 Let x € Adm({u}) be of minimal length with the property that Z N
§}\1G7@7Up(x) # 0, we would like to show that ¢(x) = 0. Arguing as in the proof of Lemma
above, we see that the intersection Z N §}\1G70’Up (x) is a union of connected components of §}\1G70’Up (x)
and that Z N §?1G7@7Up (x) is closed in §}\1G7@,Up(§ x). Let V be one of these components, then V has
dimension /(x) and V is closed inside gﬁq@yﬂﬁ x). Thus V must be an irreducible component of
She g0 (< ).

By Lemma we see that x is o-straight. By Lemmam there exists y € KAdm({u}) such that
the natural map Sh¢ g 7» (w) — Shg, i, pr factors via a finite étale map Sheg g y» (w) — Shg k,pr{y} and
such that ¢(z) = ¢(y). We conclude that the image of V' in Shg g y»{y} is an irreducible component of
She ik ur{y}. Since V is closed in §1\1G7@,Up(§ x) and thus in é}\lGﬂj,Up, and since the map gﬁGﬂLUp —
Shq k,u» is perfectly proper, it follows that 7(V) is closed in Shg g y». Therefore m(V') is closed inside
She k,u»{= y}, the closure of She k,u»{y}, and therefore an irreducible component of Sh¢ i »{= y}.

Conjecture tells us that (V) intersects the zero-dimensional EKOR stratum Sheg g y»{7}, and

since (V') C Shg i ur{y} it follows that 7 = y and so that 0 = ¢(y) = ¢(x). It follows that z = 7 and
so we are done. 0

4.3.8. We will explicitly analyse the basic KR stratum §}\1G7@’Up (1), where 7 € Adm({u}) is the
unique element of length zero. Let x € Shg ¢(7)(F,) with image 7(z) € She k,u»(Fp) and choose an

isomorphism D, ~ V7, ®z, Zp sending 54,04 t0 5o ® 1. Let b € G(@p) be the element corresponding to
the Frobenius of I, under this isomorphism. Let I, be the algebraic group I, introduced in Section

B9 and let

ir Ix,A§1 — GA’;

Jep I%Qp — Jp

be the maps induced by the choices made above. Then by |20, Proposition 5.2.2|, there is an isomor-
phism of perfect schemes (where Shg 5,00 C Shg ik y» denotes the Newton stratum associated to

[0])
in(a) * Le(QN\X (11,0) i x G(AS)/UP — She i ), urs

where I,(Q) acts on G(Alf’) via jE and on X (u,b)k via jup : 1(Q) — J5(Qp) and then the natural
action of Ju(Qp) on X (p,b)x. Moreover, it follows from |20, Proposition 5.2.6] that j& and j,, are
isomorphisms and that I(R) is compact mod centre.

Consider the Cartesian diagram

She 0,100 —— Shtg 0,1

(4.3.2) | |

Sha i p),ur — Shta, k. {u},[)
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Applying Lemma to Shtg g, ) and Shtg i 1,15 and using i, we can identify (4.3.2) with

{X(u,b)@}

She g, e, U 75(@p)

j !

L@\ (1, b)xc x GAZ) VP — [Xue].

By Lemma the map (induced by the bottom horizontal map)

p X(/‘v b)K
X(p, )k x G(A}) — [W]

is the natural projection map onto the first factor followed by the natural map to the quotient. As in
the proof of Theorem it follows that there is an isomorphism

i : I(Q\X (1 b)g x G(AD)/U” — She g
such that the map (coming from the left vertical map in )
L (Q\X (1, 0)g x G(A})/UP = L(QN\X (n,b)k x G(A})/UP,
is induced by the natural projection X (u,b)y — X (11, b) x and the identity of G(A’}).

4.3.9. To analyse the fibers of §T1G’Q;7Up (1) = mo(Shg, k,u»), we will first analyse the fibers of X (p, b)g(7) —
m(G)]. Let Jj¢ — Jl‘}er be the simply connected cover of the derived group of J.
Lemma 4.3.10. The group J;°(Qp) acts transitively on the fibers of
X(p; 0)o(r) = m(G)7-
Proof. The element 7 is o-straight and so J,(Q,) acts transitively on X (u,b)g(7) by Jp(Qp) by |17,

Theorem 4.8]. The stabiliser of a point is a parahoric subgroup N, C J,(Q,) by |56, Proposition 3.1.4].
Therefore our map can be identified with the natural map

X(ubh(r) = 22 B — s,

using Lemma and the fact that b is basic in the last step, and the result follows. O

4.3.11. The goal of this subsection is to prove an auxiliary result. Let G and H be connected reductive
groups over Q that are inner forms of each other, and such that they are isomorphic over A?. Fix an

identification G ® AL ~ H® A}} and an inner twisting W : G@p — H@p7 which induces an isomorphism
m(G)§ ~ m(H)7. Recall the notation G(R)4 and G(Q)+ from Section
Proposition 4.3.12 (Borovoi). The images of G(Q)+ and H(Q)4 in
G(A?)
p(G=<(A}))
are equal (after applying our fized identifications).

x m(G)7

The following arguments have been reproduced and adapted with permission from Mikhail Borovoi’s
Mathoverflow answer |4]; we will use |3, Section 3|. We consider the crossed module (G** — G) and
the hypercohomology

H(Q,G) == H(Q,G* — G),
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where G is in degree 0; see [3]. The cohomology set HY, (Q, G) is naturally an abelian group that does
not change under inner twisting of G. The short exact sequence

1-1-G)=(G*—>G)=(G*—=1)—1
induces a hypercohomology exact sequence
G*(Q) — G(Q) - H,(Q,G) —» H'(Q,G*),
where
ab’: G(Q) = Ha,(Q, G)
is the abelianisation map. Let Z be the center of G, then by definition,
G(R)4 = Z(R) - p(G*(R)),
and hence
G(R)1/p(G(R)) = ab*(Z(R)) C ker[HS (R, G) — H(R, G*)].
We see that the image of G(Q); in HY (Q,G) can be identified with the preimage ab’(Z(R)) C
HY (R,G) in ker[H?, (Q,G) — H'(Q, G*°)] under the natural map
f:ker[H(Q,G) — HY(Q,G*)] — ker[HS,(R,G) — H'(R,G*)].

Lemma 4.3.13. The preimage of ab’(Z(R)) € HY (R,G) in ker[H?, (Q,G) — HY(Q,G*)] under f
coincides with the preimage of ab®(Z(R)) in HY, (Q,G).

Proof. Let £ € HY, (Q,G) lie in the preimage of
ab’(Z(R)) C ker[HY, (R, G) — H'(R,G*)].

Then the image of ¢ in H'(R,G*°) is trivial, and therefore, the image of ¢ in H!(Q,G*°) lies in the
kernel of the localisation map
HY(Q,G*) — H'(R,G™).

By the Hasse principle for simply connected groups (|44, Theorem 6.6]), this kernel is trivial. Thus the
image of ¢ in H'(Q,G) is trivial, and hence ¢ lies in the preimage of ab’(Z(R)) in ker[H?, (Q,G) —
HY(Q,G*)], as required. O
Corollary 4.3.14. The image of the abelianisation map G(Q)1 — HY (Q,G) is the preimage of
ab’(Z(R)) ¢ HY(R,G) in HY, (Q,G).
Proof of Proposition[{.3.19 Tt is clear from Corollary [£.3.14 and the discussion above that the image
of G(Q)+ — HY (Q,G) is the same for all inner forms. Thus the images of H(Q);+ and G(Q)4 in
HY.(Q,G) = HY,(Q,H) are equal.

To prove the proposition, we simply note that the following diagram commutes

G(Q .
) Hy, 1@’ G)
GAp)
iy ozoo Hap(Q0, G).
and that 71(G)9 is a quotient of G(Q,)/p(G*(Qp)) by Lemma [3.4.2| O

Proposition 4.3.15. Let X be a finite set of primes with p € . Then GSC(A?) acts transitively on
the fibers of

g?lG’@(T) — 7T0(Shg7K).
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Proof. Let z € Shg g(7)(Fp), where Shg g(7) == lim, Shg g e (1), with image = € Shg k (Fp). Choose

an isomorphism D, ~ V7, ®z, Zp sending 5,0, t0 5o ® 1 and let b € G(Qp) be the element corre-
sponding to the Frobenius of D, under this isomorphism. Then as explained in Section [£.3.8] we get
an isomorphism

LI NX (1, )(BXG(AP)/UP_)LShGV)[b]UP— She0.-
By Lemma [3.3.3] this induces an isomorphism
lim 7, (Q)\X (1, 0)g(7) x G(A%)/UP — 1im She g 10 (7) = Shep(7)-
Up

We also note that the natural map I, (Q)\X (i, b)g(7) x G(A?) — lim, I (Q)\X (e, b)g(1) x G(A?)/Up
is a bijection by |37, Lemma 4.20].

Using the base point z € Shg g (F,) to trivialise the 7(G)-torsor mo(Sheg k), see the beginning of
Section we get an isomorphism

ﬂ'(G) — Wo(ShGJ()
g g Za,
where Z, is the connected component containing x. By the discussion in Section we may identify
o G(AI})
m(G) = G(Q)+\m(G)7 x P(G(AD))’
By Proposition [3.4.5] the map
oy I (QA\X (i, b)g ¥ G(A’;) — mo(She k),

g

induced by i, satisfies a,(y, ¢*) = (k(y), g*) - Zz, where k(y) € m1(G)J is the image of y and gP €
G(AI}). Hence our identifications fit in a commutative diagram

gl\lg,@(T) = L(Q\X (1, b)y(7) x G(AI})

(4.3.3) i l
o _G&AY
mo(She. k) «=— G(Q)+/m(Ge, )T X Sy

where the map
X(11,b)g(r) x G(AD) = m1 (G, )F x G(AD)

is the product of the natural map  of Section and the identity map on G (A?). By |44, Theorem
7.8, which is a strong approximation result, the group I°°(Q) is dense in (using j, , and j% from Section

to make the identification)
[Ire@) =7 @) [] ¢<@).
ey tes\{p}
Recall that we sometimes write G*°(A%) C G(A}) for p(G™(A%)) C G(A%). Using the discussion above,
we can identify the right vertical map in (4.3.3]) with the natural map
X(pblylr) Gl G(ay)

HOVE@) Mm@y ~ 9@/ <”1(G@p)7XGSC<A§i>>'
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X(pb)g(T -
% — m1(Gg,)7 and thus we get

Hzez\{p}G @) GQ)+/ | m(Gg,)T * GSC(AP) :

Lemma |4.3.10[ tells us that x induces an isomorphism

(4.3.4) I(Q)\1(Gg,)T x

The fibers of the natural map
G(A}) G(A})
f
— m (G
omgy 0@) ™M) o)

clearly have a transitive action of G (A?) To show that the same is true for the fibers of (4.3.4), we
need to show that the images of the two natural maps

m1(Go,)T ¥

G(Ap)
GSC(AP)

are equal. Now note that I,,(Q) = I,(Q), because I24(R) is compact and thus connected, see |44, Cor.
1 on page 121|. Then the required identification of the images of (4.3.5)) is exactly what is proved in

Proposition 4.3.12] ]

Proposition 4.3.16. Let ¥ be a finite set of primes with p € X. If either Shy (G, X) is proper or
Congecture holds, then GSC(A?) acts transitively on the fibers of

70(She (< w)) — m0(She k)-

Proof. There is a G (A?)—equivariant commutative diagram

(4.3.5) 1;(Q), G(Q)4 — m(Gg,)T ¥

Sheo(7) mo(Shg (< w))

(4.3.6) \ /

WO(ShG,K)-

If Conjecture 1] holds, then by Proposition m every connected component of §}\1G@ e (< w)
intersects ShGQ) Up( ). If Shy (G, X) is proper, then YU(G X) is proper by the main result of [36].
Therefore Shg i y» is perfectly proper and moreover Sh(;@ yr is perfectly proper since Sh(;@ Ur —
She, k,ur is perfectly proper. Now Lemmatells us that every connected component of ShGﬂLUp(S

w) intersects éBG,(Z),UP (7). Thus under the assumptions of the proposition the horizontal arrow in
is surjective. Indeed, it is a continuous morphism of profinite sets that is a countable inverse
limit of surjective maps between finite sets.

We see that the fibers of the left diagonal map surject onto the fibers of the right diagonal map. Now
G*° (A?) acts transitively on the fibers of the left diagonal map by Proposition and therefore

also on the fibers of the right diagonal map. O

4.4. Proof of the main theorems.

Theorem 4.4.1. If either Shy (G, X) is proper or Conjecture holds, then the natural map v :
Shg g.ur — Shg gur is an isomorphism.

Proof. We know that ¢ is a closed immersion by Proposition whose source and target are equidi-
mensional of the same dimension by Proposition To prove that this closed immersion is an
isomorphism, it suffices to show that for each w € Adm({x}) of maximal length, the closed immersion

She g e (S w) — g}\la,@,m(ﬁ w)
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is an isomorphism. Now source and target are locally integral by Corollary and so the source is
a union of connected components of the target. To show that the inclusion

mo(Shep 10 (< w)) = mo(She g (< w))

is an isomorphism, we will use the G(Ap )-equivariance of the map 7o (Shg (< w)) — 7T0(§EG7@(§ w)).
We know by Corollary [3.4.7] that

Shg g e (< w) — mo(Sha,x,ur)
is surjective for all UP, and therefore it is enough to show that GSC(A?) acts transitively on the fibers
of §I\1G,@(§ w) — mo(She,x). Under our assumptions, this follows from Proposition [4.3.16 O

4.4.2. Proofs of the main theorems. In this section we deduce the main theorems of the introduction.

Proof of Theorem[3 Recall that we assumed in Theorem [2] that 7r1(G) 1 is torsion free, which implies
that all parahoric subgroups of G(Q,) are connected by Lemma . Part 1 of Theoremlls Theorem
1A.4.5]

Part 2 of the theorem for an Iwahori subgroup follows from Theorem [3:3.1] in combination with
Theorem To apply Theoremwe need to verify that either Shy (G, X)) is proper or Conjecture
- 4.3.1) holds. In the statement of Theorem [2f I we are assuming that either Shy (G, X) is proper or that
G, is unramified. Now we recall that Conjecture @ holds if G, is unramified by [53, Proposition
6.20] and the main result of [1], see Remark [4.3.2] Part 2 of the theorem for an arbitrary parahoric
subgroup follows from the case of an Iwahori subgroup by |55, Proposition 7.8|. O

Proof of Theorem[]l Recall that we assumed in Theorem [2] that 71 (G); is torsion free, which implies
that all parahoric subgroups of G(Q,) are connected by Lemma Theorem (1} is therefore a direct
consequence of Corollary [3:2.7] O

Proof of Theorem[3 By [55, Theorem 8.1.(ii)|, uniformisation of isogeny classes, as proved in Theorem
implies that the He—Rapoport axioms hold. O

Proof of Theorem[4. This follows from Theorem below by specialising to the case that G2 is
Q-simple. Note that Theorem has the assumption that either Shy; (G, X) is proper or Conjecture
4.3.1 holds, which is true if either Shy7 (G, X) is proper or if G, is unramified, see the proof of Theorem

above. O

4.5. Consequences for irreducible components. In this section we prove a generalisation of The-
orem Before we can state it, we need to introduce some notation. Let G* = II, Gi be the
decomposition of G4 into simple groups over Q and consider the induced maps of Kottwitz sets

B(Gg,) — B(GY! —>HB 1Q,)-

Definition 4.5.1 (Definition 5.3.2 of [30]). An element [b] € B(G) is called Q-non-basic if the image
of [b] in B(Gjq,) is non-basic for all i. A Newton stratum Shg g ) ve is called Q-non-basic if [b] is
Q-non-basic.

Recall that K C S corresponds to a very special parahoric.

Theorem 4.5.2. Let w € KAdm({u}) such that the EKOR stratum Shg x ye{w} intersects a Q-non-
basic Newton stratum. If either Shy (G, X) is proper or Conjecture holds, then

ShG,K,Up{w} — Shg,k.ur

induces a bijection on my.
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We start by proving a lemma.

Lemma 4.5.3. Forw € KAdm({u}), viewed as an element of Adm({u}) via KAdm({u}) € Adm({u}),
the forgetful map Shg g ye(w) — Shg k. ve factors through Shg k y»{w}, via a surjective map Shg g e (w) —
ShGJQUp{’UJ}.

Proof. The factorisation is [50, Theorem 5.4.5.(3)] and the surjectivity is proved there under the as-
sumption that Axiom 4(c) of [16] holds, which is true by Theorem O

Proof of Theorem [4.5.4. We will prove that if w € Adm({x}) such that Shg g e(w) intersects a Q-
non-basic Newton stratum, then the natural map mo(She g e (w)) — m0(Shg,x,pr) is a bijection. By
Lemma this will imply Theorem

Step 1: We first deal with the case of o-straight w € Adm({x}). Then Shg g y»(w) is contained
in a unique Newton stratum She g 1), v, see [50, Theorem 1.3.5], which by assumption is Q-non-basic.
We deduce from Theorem Corollary [£.2.3 and Proposition [£.3.16] that for any finite set of primes
3 with p € 3, the group GSC(A?) acts transitively on the fibers of

mo(Shg p(w)) — mo(Sha k).

By Lemma , there exists y € ®Adm({u}) such that the natural map gEG,(D,UP (w) — Shg k,ur

factors via a finite étale map Shq g yr(w) — Shgxur{y}. We want to apply [23, Theorem 3.4.1]
to the G(A?)—equivariant finite étale cover Shg gp(w) — Shg,x{y}. Note that |23, Hypothesis 2.3.1]|
follows from Theorem[I] see [23, Remark 2.3.3]. Moreover, [23, Hypothesis 3.4.1] of loc. cit. is satisfied
since Shq g, p» is locally integral because G is very special, see |25 Corollary 4.6.26]. The assumption
that every connected component of Shg g y»{y} intersects a Q-non-basic Newton stratum holds since
Sh¢ p,ur{y} is contained in a single Q-non-basic Newton stratum since She g 7» (w) is.

Therefore the assumptions of |23 Theorem 3.4.1] are satisfied and we conclude that if ¥ con-
tains all the primes ¢ where Gai has a compact factor, then GSC(A%) acts trivially on the fibers of
7o(Shg g(w)) — mo(Shg,x ). Since it also acts transitively on these fibers by Propositionand since
the map mo(Shg g(w)) — mo(Shg k) is surjective by Corollary we deduce that mo(Shg g(w)) —
mo(Shg k) is a bijection.

Step 2: For general w € Adm({u}) intersecting a Q-non-basic Newton stratum Shg g ) e, there is
a o-straight element w’ < w with Shg g ;7» (w') N She g ), y» non-empty; this follows from [19, Theorem
4.1] as in the proof of Lemma “ It follows from our assumptions that every connected component
V of Shg g pr(< w) intersects She g pye(7). Thus the intersection V' N Shg g yp (< w') is non-empty,
and it is therefore a union of connected components of She g » (< w'). Hence V N Shg g e (< w') is
equidimensional of dimension ¢(w’) and must therefore intersect Sh¢ g (w’). We see that the natural
map She g y»(w') = Sheg g yr (< w) induces a surjective map on mp. Consider the commutative diagram

Shep(w' 70 (She,p(< w)

\ /

70(She, k)

The right diagonal map is surjective by Corollary [3.4.7] the horizontal map is surjective by the dis-
cussion above and the left diagonal arrow is a bijection by step 1. It follows that mo(Shg ¢(< w)) —
7o(Shg, i) is a bijection and since 7 (Shg g(w)) — 7o (She ¢(< w)) is a bijection by the local integrality
of m(Shg ¢(< w)), see Corollary , we are done. O
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APPENDIX A. CONNECTED COMPONENTS OF AFFINE DELIGNE-LUSZTIG VARIETIES WITH VERY
SPECIAL LEVEL STRUCTURE, BY RONG ZHOU

As explained in the introduction, proving uniformisation of isogeny classes in Shimura varieties of
Hodge type with parahoric level is closely related to the problem of understanding connected compo-
nents of affine Deligne-Lusztig varieties with parahoric level. In this Appendix, we study the connected
components of affine Deligne-Lusztig varieties with very special level structure and prove for instance
that J,(Q,) acts transitively on these connected components. These results will be used in Section
to prove uniformisation of isogeny classes in Shimura varieties of Hodge type with very special level.

A.1. The main result. We follow the notation of Section 2] Thus G is a reductive group over Q,
and {pu} is a geometric conjugacy class of cocharacters of Gf We assume that G is quasi-split, and

we let Z be the Iwahori group scheme corresponding to a o- btable alcove a in the building for G. We
fix G a very special standard parahoric group scheme for G. Then G corresponds to a o-stable special
point s lying in the closure of a and we write K C S for the subset of simple affine reflections which
preserve s. The projection W — Wy induces an isomorphism Wx = Wj.
As explained in |55, §9], we have an identification
Wi \W /Wi = X.(T)7.
By [16], there exists a reduced root system X (the échelonnage root system) such that
Wo = W(X) x Q"(%),
where W (%) (resp. QV(X)) is the Weyl group (resp. coroot lattice) of 3. We define a partial order
< on X.(T)] by setting A < A if A — X\ can be written as a sum of positive coroots in QV(¥) with
positive integral coefficients. Then by |35, pp. 210] the Bruhat order on Wi \W /Wy agrees with the
partial order <. It follows that for u € X.(T)}, we have
Adm(u)x = {1 € X(T)F 1A < u).

Let b € G(Qp) such that [b] € B(G,{u}). We have the affine Deligne-Lusztig variety X (u,b)x
defined in Section 2.4.2 We also set
Adm(p)® = W Adm(p)Wg ¢ W
and define
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which is a locally closed subscheme of the Witt vector affine flag variety Grz. Then there is a natural
map

which is equivariant for the action of the o-centraliser group J,(Q,). In fact, (A.1.1)) is a fibration with
connected fibers and hence induces a J,(Q))-equivariant bijection

(A.12) 70(X (1, b)) =5 70X (11,b) ).

A.1.1. Recall from e.g [28, Section 1.1.2| that associated to [b] € B(G) there is a Newton cocharacter
D Let M denote the centraliser of 7, and we fix a representative b of [b] such that v = 7). The
existence of such a representative follows from the same argument as in |6, Lemma 2.5.2] which also
shows that b € M ((@p). Then b is a basic element of M, in other words 7 is central in M.

We use a subscript M to denote the corresponding objects for M. Thus Wy (resp. Wy ar) denotes
the Iwahori-Weyl group (resp. affine Weyl group) for M. The intersection M (Qp) ng (Zp) arises as
the Zp—points of a very special parahoric group scheme M for M, which is standard for the alcove ays
for M determined by a. We write Zys for the Iwahori group scheme of M determined by a,; and we
let Kj; C Sy denote the subset of simple affine reflections for M corresponding to M. We let ¥,
denote the échelonnage root system for M so that

Wan =W (Ewm) x Q¥ (Zm).

For z € m (M), we write 7, € Qs for the corresponding length 0 element, and we write 7, = t#*w,
for a unique w, € Wg. Then the map x — u, induces a bijection

(A.1.3) T (M) = {X € Xu(T)r|\ is M-dominant and M-minuscule},
here M-minuscule means minuscule with respect to the root system X,;. We define the set
Tupar i= Az € m(M)1lrn(b) = 2, pa < i}

Via the bijection , we also consider I,; s as a subset of the set of M-minuscule and M-
dominant elements in X,(7T);. For each A € I,pn, we have the affine Deligne-Lusztig variety
XM(\,b),, for the group M. It is a closed subscheme of the partial affine flag variety for M with
respect to the parahoric subgroup M, and its Fp—points are given by

{m € M(Qy)/ M(Zy)lm " bo(m) € M(Z)¥ M(Z,), N <ar A}.
It is equipped with a natural map
(A.1.4) XM\ b) iy, — X (s b) i

which is equivariant for the action of the o-centraliser group J,(Qy).

A.1.2. Our main theorem on the connected components of affine Deligne—Lusztig varieties is the
following.

Theorem A.1.3. J,(Qy) acts transitively on wo(X (p,b)x). In particular, for any X\ € I, v the map

(A.1.4) induces a surjection
mo(XM (N, 0) k) — mo(X (11, b))

Remark A.1.4. The theorem is stated for G a quasi-split reductive group over QQ,. However, the result
makes sense for general quasi-split groups over any local field F' and can be proved in exactly the same
way.
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A.1.5. We follow the strategy of [6] and [39] where this result was proved for unramified groups G.
The result follows from the following two propositions.

Proposition A.1.6. The natural map

H XM()‘v b)KIV[ - X(Ma b>K

)\Efmbij

induces a surjection

[T 70X b)) = (X (1, b)ic).

)\elu,b,M

Proposition A.1.7. Let A € I, . The image of the natural map
mo(X ™M (A b)ky) = mo(X (11, ) )
does not depend on the choice of A € I, .

Proof of Theorem[A.1.3 Fix A € I, p. By Proposition and Proposition the map
71-0(‘)(]\/[()‘7 b)KM) - WQ(X(M, b)K)

is surjective. By [19, Theorem 4.1 and Theorem 5.1], J,(Qp) acts transitively on mo(X (A, b),, ), and
hence on mo(X (1, b) k).
0

A.1.8. We now proceed to prove the two propositions. Note that by a standard reduction (see |19}
Section 6]), it suffices to prove the propositions when G is adjoint and Qp-simple. We may and do
assume this from now on.

A.2. Proof of Proposition

A.2.1. In the case of unramified groups, Proposition is |6, Proposition 3.4.1]. Here we prove
the general case using a different method based on the Deligne—Lusztig reduction method for affine
Deligne—Lusztig varieties in the affine flag variety.

We begin with some preliminaries regarding o-conjugacy classes in Iwahori—Weyl groups. For any
element w € W, we let n be a sufficiently divisible integer such that ¢” acts trivially on W and
wo(w)...oc" Hw) = t* for some A\ € X,(T);. We set v, = % € Xu(T)r g and 7y, € X*(T)}:Q for
the dominant representative of v,,. We let k(w) € m1(G)r denote the image of w under the projection
W = 11(G); — 71 (G)r. We write B(W, o) for the set of o-conjugacy classes in W. Then w + [u)]
induces a well-defined map ¥ : B(W, o) — B(G) and we have a commutative diagram (see |17, Section
3.3, Theorem 3.5|):

B(G)
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A.2.2. We will need the following lemma. We write J C K =S for the subset corresponding to M.
Recall that an element w € W is said to be o-straight if

nl(w) = l(wo(w)...o" Hw))
for all n.

Lemma A.2.3. Let w € W be o-straight such that v € [b]; in particular Ty = Uy,. Let u € Wy such
that w(vy) = Uy and set wy == uwo(u)~L. Then wy € Q.

Proof. It suffices to show that wy € Wy, and
wing (Zp)w; " = Tag(Zp).

The first statement follows since wy(¥y,) = 7. By [19, Theorem 5.2|, the element w is (v4,,0)-
fundamental. Thus

WU(IMVW (Zp))w_l = IMuw (Zp)

where M,,, is the centraliser of v, and Iy, (Z,) := I(Zp) N M,, (Q,). Since u € Wy, we have

9]

uZny,, (Zp)u™' = Ip(Zp). It follows that

9]

wyTng (Zp)wy

o= 0o (Ta(Zp) wy !

i
= uwo(Iyy,, (Zp))w ™ tu™!

v

= T (Zyp).

as desired. O

Proof of Proposition[A.1.6. By (A.1.2), it suffices to show the natural map
IT XMoo = X(u,b)~

)\61#757]\/[

induces a surjection
T 7o(X™ (0, )53) > mo(X (1, b)),
NS

Let Y be a connected component of X (u,5)®. Then by [19, Theorem 4.1], there exists a o-straight
element w € Adm(u)”, such that Y N X, (b) # 0. Let wy denote the element constructed in Lemma
and u € YW such that uwo(u) = wy. Then we claim that [b]as = [iy]yr € B(M). Indeed, we
have vy, = ¥y = Up. Therefore the image of [b]as and [wy]as in 71 (M) coincide up to torsion. On
the other hand, the images of [b]y and [wy]y in 71 (G) 1 coincide and ker (71 (M) — 71 (G)r) is torsion
free. It follows that ras([b]ar) = kar([ty]ar) and hence [b]ar = [wy]ps. Thus we may replace b by wy.

We will show that Y N X%(zbﬁ) # 0. Since wy € Adm™ (\)5M | where \ € 1,4 s corresponds to the
image of wy in m1(M)y, it follows that X, (wy) C XM (X, 1iy)%; this implies the proposition.

For any affine root o, we let U_,, denote the affine root subgroup corresponding to —«; over Zp.
By |5, Section 4.3.2, 4.3.5 and 4.3.7|, U_,, is the group scheme associated to a finite free Zp—module.
For any € > 0, we let L{_ai+e(2p) be the subgroup of U_,, (Zp) corresponding to the affine function
—a + €. Similarly, we write U_,1 (Z,) for the union of U_q,1c(Z,) over all € > 0. As the notation
suggests, these arise as the Zp-points of group schemes U_,,+. and U_,, 1 over Zzh and the quotient
U0, (Zp) JU—q,+(Z) is a 1-dimensional vector space over k. We choose a group scheme homomorphism

f:Gy, > U_4
which lifts the map k = U_o, (Zy) U, +c(Zy).
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For R a perfect k-algebra and a € R, the map
ha : R = U_o(W(R))
a > f([a])

where [a] € W(R) is the Teichmiiller lift of a, induces a k-scheme morphism
he s AVPT s LY

where AP denotes the perfection of Al over k. The induced morphism AP — Grz extends to a
morphism PLrerf 5 Gry also denoted hgy. Then we have

(A.2.1) ha(o0) = 3,72 € Grr.

Let goZ € Y N Xy (wy) with go € G(Q,). By |19, Theorem. 5.2], we may choose go such that
go_lwugo = . Let s, ...s1 be a reduced word decomposition for u (note that s; € K) and we write u;
for the element s1...s; € W and ug = e. We write g; € G (@p)for the element gou;. We will prove by
induction that ¢;Z € Y for ¢ =0,1,...,n; clearly this is true for ¢ = 0.

Assume g; € Y and we let a; 41 denote the positive affine root corresponding to s;4+1. We consider
the map

9= Giha;,, : PLPert 5 Gry.

Since U_ C I5;41Z, for any s € AMP (k) we have

Q41
g(s)_lwﬁg(g(s)) = hai+1 (5)_lgi_lwtio-(gi)o-(hai+1 (5))
€ Léa; LTwiZo(50,,,)T
c |Jziz
T€EA
where w; := u; 'wyo(u;) € Adm(p)X and A C W is the subset
A= {wz’, Si+1Wj, wi0(3i+1)a 5i+1wi0(5i+1)}-

Since Adm(u)® is closed under left and right multiplication by W, we have A C Adm(u)¥, and
hence
g(s) Mifo(g(s) e | TT
veEAdm(u)K

for any s € PLPerf(k). Moreover we have ¢(0) = ¢,Z and g(co) = g;41Z, where the latter equality
follows from (A.2.1)). Thus the image of g is a curve in X (u,b)X which connects ¢;Z and g;41Z and
hence ¢g;11Z € Y. Then by definition g,, g,Z lies in the image of X% (uy) as desired. O

A.3. Proof of Proposition

A.3.1. When G is unramified, this proposition follows from the proof of |6, Proposition 4.1.12] when y
is minuscule; the general case is proved in [39, Proposition 5.1]. The main input is the construction of
explicit curves in X (i, b) ¢ which connect points in XM (X, b) ,, and XM (N, b)k,, for X £ N € I, 1.
The construction of these curves relied on certain combinatorial results concerning the root system for
G. The exact same method of proof works in our setting; however, there are a few subtleties which we
now explain.

First, the explicit curves were constructed in [6] and [39] using root subgroups of G, Which are all
isomorphic to G, when the group is unramified. In general, the root subgroups are more complicated
and thus one needs to be more careful. However, we are still able to give a uniform construction of the
curves that we need.
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Secondly, we need to generalise the combinatorial results to general quasi-split groups G. It turns
out there is a systematic way to deduce these combinatorial results for quasi-split G from the case of
unramified groups which we now explain.

A.3.2. Recall we have assumed G is adjoint and simple. As in |17, §7.2], see [56, Proof of Theorem
A.3.1] for an explicit construction, there is an unramified adjoint group H over Q, such that the pair
(W', ¢") consisting of the Iwahori-Weyl group for G’ and the action of Frobenius is identified with the
pair (W, o). Moreover the échelonnage root system ¥ is identified with the absolute root system >’ for
G’, and we have an isomorphism

m(G)r = m(G)
X*(T)I = X*(T/),

where T” is a suitable maximal @p—spht torus of G.

We use a superscript ’ to denote the corresponding objects for G’. Then G determines a hyperspecial
subgroup G’ for G’ and we write K’ C §' for the corresponding subset of simple reflections. Then M
determines a Levi subgroup M’ of G’ and hence a subset J’ C K’. It follows that the combinatorial
data

(A.3.1) (3, Xu(T)r. 0, J, p, 1 ()

is identified with the corresponding data for G’. Thus any result which only depends on the data
((A.3.1)), can be reduced to the case of unramified groups. The combinatorial results that we need
are already proved in the case of unramified groups in [39] and [6]. We therefore take the convention
that whenever we need certain results which depend on the data ((A.3.1])), we will refer to the relevant
result in 6] or [39].

)

.13/

A.3.3. We now proceed with the proof of Proposition |A.1.7} Let x, 2’ € m(M);. We write x (ﬂn
for some o € Y and r e Nif 2z — 2’ = oY — 6"(a") and

Ky Hzt+aV s Be—oar(aV)s Ha! < M
(

a,r .
%) 2’ and neither

7 (&9

a,r .
We write z — 2’ if

; ot (a),r—i
x+av_0_1(av>( _)> )IL'/
nor

z+o'(a)—o"(a) (@)

" (0"(0@7‘*1’)
for any ¢ € [1,r — 1].
We let
(,):(QE)©zR) x (X(T)r ®zR) = R
be the natural pairing, where Q(X) is the root lattice of X. For any element o € X, we write O, for
the g-orbit of a. We let h denote the number of connected components of the Dynkin diagram of G

over @p; then we have #0,, € {h,2h,3h}.

Lemma A.3.4 (|39, Lemma 7.7]). Let x # «’ € 1,5 pr. Then there exists xj € mi (M), aj € ¥ — Xy
and rj € N for j € [0,m — 1] such that

(1) o is M-dominant and M-minuscule.

(2) 15 € (1] if #04, € {h,2h} and r; € [1,2h — 1] if #0O,, = 3h.

(3) o = x,xpy = 2’ and we have x; (a13) xj41 for j € [0,m —1].
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Proof. This follows from |39, Lemma 7.7| by discussion in Section above. Note that in loc. cit.,
the result is stated for M a Levi subgroup such that b is superbasic in M. However, one checks that the
same proof works for any M as long as I, pr contains a weakly dominant element. Here A € X, (T)r
is weakly dominant if (a, A\) > —1 for any positive root a € ¥. But as in [39, Lemma 4.1|, any element

A € 1,5 v is weakly dominant, so the result applies to our M.
O

A.3.5. We now construct certain curves inside LG which we will use to connect points in X (u,b)x.
Let a € ¥ be a root. Then « determines a relative root a of G over @p which we always take to be
the short root. We let G,, denote the simply connected cover of the (semi-simple) group generated by
Uz and U_g and we write

ta 1 Go = G
for the natural map. We let G, denote the very special parahoric of G, such that G (Zp) = Ga(Qp) N
i71(G(Z,)).

If & is not divisible, then we have an isomorphism

Ga = RGSIV(/QPSLQ,

where K / Qp is a finite extension. Then up to conjugacy G, is identified with the very special parahoric
SLa(Op) C Ga (Q,) and there is an isomorphism

~

fa : RGSR/QPGQ — Uj.
If @ is divisible, then there is an isomorphism

Ga = RGSR-/QPSU&
where SUs is the special unitary group over K associated to a quadratic extension K' / K.

A.3.6. We recall the presentation of the K-group SUs in [52, Example 1.15].
We let 7 € Gal(K’/K) denote the nontrivial element, and we consider the Hermitian form on K'3
given by
((@-1,m0,21), (y-1,Y0,91)) = T(x-1)y1 + 7(T0)Yo + T(T1)Yy—1.

The group SUs is the special unitary group attached to this form. For i = —1,1 and ¢,d € K’ such
that 7(c)c 4+ d + 7(d) = 0, we define

ui(cv d) = I3 + (grs)
where I3 is the identity matrix and (grs) is the matrix with entries g_; 0 = —7(¢), goi = ¢, g—i; = d
and g,s = 0 otherwise. The root subgroups are then given by

Usa(K) = {usi(c,d)|e,d € K',7(c)c+ 7(d) +d = 0}
Upoz(K) = {us1(0,d)|c,d € K',7(d) + d = 0}.

We consider the very special parahoric Go(F) N GL3(Op,) of Go(F); we call this the standard

parahoric. Let 7 € K’ be a uniformiser such that 7(m) = —7m and let s € GL3 (Iv(’) denote the element
diag(m,1,1). Then the subgroup of Gy (Q,) defined by

Ga (@p) N SéL3(Of(/)S_1

is a very special parahoric subgroup of G, (@p), which we shall call the non-standard parahoric. Up to
conjugacy, these are the only very special parahorics of SUs.
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A.3.7. For a € ¥, we define a map u, : AP — LU; C LG as follows. Let R be a perfect ring of
characteristic p and a € R will denote an arbitrary element. We consider the following three separate
cases.
(1) Ga = Resg g SLa and Ga(Zyp) = SLa(O).
We define u,, to be the map induced by
a s io(fa(r™" - [a])).
(2) Go = Resj; /3, SUs and G, is the standard parahoric subgroup.
We define u, to be the map
a s ig(ur (0,771 - [a])).

(3) Gy = RGS[(/QP SUs and G, is the non-standard parahoric subgroup.
We define u, to be the map

a s ia(ur([a], “20)).

A.3.8. A calculation using the presentations of SLs or SUs above gives the following lemma (cf.
[39, Lemma 7.14]).

Lemma A.3.9. (1) Let X\,0 € X«(T); and o, 5 € ¥ such that Q(X) N (Za + Zp) is of type As,
A1 x Ay or Ay and such that

5,0 +av, 0 —pY,64+a" -5V < A
Then for all y, z € k, we have
Ua(2)us(y) € U LTGiNL*g.
N=A

(2) Let a, 8 € ¥ and X € X.(T); such that (o, BY) = (B,a") = —1 and {(a, \) > 2. Then for any
Y,z € k we have

up(2) (P ua(y)iNug(—2) € LTG
A.3.10. The following lemma is the analogue of |39, Lemma 7.8|.
Lemma A.3.11. Let z,2' € m(M);, « € ¥ — X and r € N such that

(1) o is M-dominant and M-minuscule.

(2) 1 € [1,h] if #0, € {h,2h} and r € [1,2h — 1] if #0, = 3h.
(3) z %P

Then for any P € X™ (uz,b)k,,, there exists P' € XM (uy,b)k,, such that P and P' lie in the same
connected component of X (u,b)x and we have

.

r—1
ka(P) — iy (P) =Y o'(a) € m(M)r.
=0

Proof. Asin |39, Lemma 7.5, we may assume that (ﬂ) 2’. Moreover, arguing as in |39, Lemma 7.15],
it suffices to show that there exists P € XM (u,,b)k,, and P’ € XM (y,,b)k,, such that P and P’ lie
in the same connected component of X (1, b) ¢ and we have s (P) =k (P') = Y124 o' (a¥) € my (M)

Let b, = t#<1i,; then b, is basic in M and since ks (b) = rpr(by) € m1(M)r, there exists g, € M(F')
such that g; 'bo(g,) = by. We define P := g, LT M so that P € XM (p,,b)g,, .
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byo

We first consider the case r € [1, h]. For an element g € LG, we write %7 g for the element b,o(g)b, .

We define a map u : AMP°™f — Grg given by
u(2) = gatta(2)"7ua(2) .. O ua(2) LTG

Then by ind-projectivity of Grg, u extends to a map g : PMP°™ — Grg. As in [39, Lemma 7.8, for any
z € k we have

g(z)_lbo(g(z)) € LTGug(—2)beo (bz"V_lua(z)LW
= LT Gua(—2) "y, gr(a) (co” (2)) LTG

for some ¢ € k*. Here we use [39, Corollary 7.12], which shows that w,o(a) = 0%(a) and (0% (), piz) =
0 for ¢ € [1,7 — 1]. By |6, Lemma 4.4.5], we have

fe + s e — we(o”(@Y), pe + @ —wa (0" (@) S .
Thus by Lemma (1), we have
9(2) "bo(g(2)) € |J LYGILYG
W=p
and hence g factors through X (u,b)x. Moreover one computes that
P' = g(o0) = goi = =m0 7@ L*g,
which lies in the image of XM (1., b)g,, -

We now consider the case r € [h+1,2h —1]. In this case, #0O, = 3h and each connected component
of the Dynkin diagram of G over Q,, is of type Dy4. Then either J = () or J = Og where £ is the unique
root in ¥ with o”(3) and such that 3, a lie in the same connected component of .. We consider the
following two cases.

Case (i): Either (8,p;) = 0 or (8,a) = 0. Then, as in [39, Lemma 7.15, Case 2.2|, we have
(07(a), ptz) = 0 and wy (07 () = o7 (a) for j € [1,r — 1]. Then we may define u : ALPef — Grg by

u(z) = gxua(z)bxaua(z) R (bxo)rilua('z)lﬁ—g

perf . Grg and the same computation shows that g is a curve

as above. Then u extends to g : P! _
r—1 l(aV)L+g c XM(HQ;/) b)
Case (ii): (B8,a") = —1 and (B, uz) = 1. Then by [39, Lemma 7.15, Case 2|, upon switching the

connecting P = g(0) € XM (pu,,b) and P’ := g(00) = gt~ 2i=o
roles of z and 2’ if necessary, we may assume that
(0" (8), 1z} = (0" (), pa) = (o™ (), pa) = 0.
We define u : AMPef — Grg by
w(z) = g2 a (2) 7 a(2) - wa(2) LG

;perf

Then u extends to g : P! — Grg and we have

g(2) " tho(g(2)) € L+guor7h(a)(—CQZ)(t.)\UUr(aH_Ur(ﬁ)(Clz)i_k)uorfh(a)(CQZ)’LLQ(—Z)me+g
where A € X, (T) satisfies (0" () + 0" (8), A) > 2. By Lemma (1) we have
ua(—2)bs € | ) LTGILTG
W<
and by Lemma (2) we have

Uo.r'fh(a) (*CQZ) (ikugr(a)_i_gr(lg) (clz)t A)ua-r'fh(a) (CQZ).
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It follows that
9(2)"bo(g(2)) € |J LG LTG
wsp
and hence g factors through X (u,b)x. A similar calculation to the above shows that g is a curve
connecting P = g(0) € XM (1, b) and P’ := g(c0) € XM (puyr,b) with rpr (P)—rps(P) = Yi2d o ().
O

Proof of Proposition[A.1.7]. This follows by combining Lemma and Lemma O

A 4. Uniformisation in the case of very special level structure.

A.4.1. We will use Theorem to give a description of the isogeny classes in .7k (G, X). We assume
that p > 2, p { |m1(Gqer)| and that G, is quasi-split and splits over a tamely ramified extension of
Qp. We now follow the notation in Section so (G, X) is a Shimura datum of Hodge type. We let
U = UPU, where U, C G (A];) is a compact open subgroup and U, is a very special connected parahoric
subgroup of G(Q,); we write G for the corresponding parahoric group scheme.

A.4.2. Recall that for € Shg xp»(F)) there is an attached abelian variety A, with contravariant
Dieudonné module I, equipped with tensors s .. Moreover for all £ # p the f-adic Tate module
Ty A, is equipped with tensors s, ¢, € TpA2. By |55, Section 5.6], there is an isomorphism

Va(p) @2y Zp = Da,
taking s, to Sq,0.. Under this identification, the Frobenius on D, is of the form ¢ = bo for some
b € G(Q,); then b is well-defined up to o-conjugation by Gx (Z,).
We let 1/ € X,(T); denote the image of a dominant representative of the conjugacy class {;Lgl},
and we define u = o(i') as in Section Then by the argument in [55, Section 5.6], we have

b € Gi(Zy) G (Zy)
for some w € Adm(u)g; it follows that 1 € X (u,b) i (F,). As in [55, Section 6.7], there is a natural
map
i+ X (1) (Fp) = Fuy (Gv, Hy ) (Fy)

defined using Dieudonné theory, which sends 1 to the image of z under Shg i v» (Fp) = (G, X)(Fp) —
Ty Gy, Hy ) (Fp).

Let r be the residue degree of the extension E,/Q,. Then X (u,b)k is equipped with an action ®
given by ®(g) = (bo)"(9)-

Proposition A.4.3 (cf. [55, Proposition 6.5]). Suppose U, is a very special connectedm parahoric
subgroup of G(Qp). Then there exists a unique map

iwt X(u,0)k (Fp) = (G, X)(F,)

lifting 4/, such that 8a,0,is(g) = Sa0x and ® oid, = i, o ®, where ® acts on Sy (G, X)(Fp) via the
geometric r-Frobenius.

Proof. For notational simplicity, we write X (p, b) g for X (i, b) i (Fp). The uniqueness and compatibil-
ity with @ is proved in the same way as [55, Proposition 6.5]. We may thus define X (p1,b)% C X (1, b)
as the maximal subset which admits such a lifting. We therefore need to show that X(u,b)% =
X (u,b) k. To do this, we follow the strategy of |55, Proposition 6.5].

15gee Section for the definition of connected parahoric.
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Arguing as in [55, Lemma 6.10], we have that X (u,b)% is (the set of F,-points of) a union of
connected components. Note that the key input |55, Proposition 6.9] needed for this can be proved
verbatim in our setting.

It therefore suffices to show that the map

X (p,0)% — mo(X (1, 0) k)

is a surjection. Let M C Ggq, be the standard Levi subgroup given by the centraliser of the Newton
cocharacter 7. By Theorem there exists A\ € I, ps and an element

g€ X(:Uﬂ b);( mXM()\ab)M

Upon replacing = by i,(g) and using the diagram [55, Equation (6.7)], we may assume b € M(Qp).
Since b is basic in M and using |19, Theorem 4.1], we may further assume that b = 7, where 7\ € Qs
corresponds to ks (b) € m(M)g.

Arguing as in [55, Lemma 6.11|, we find that [55, Assumption 5.12| is satisfied, in other words, the
Hodge filtration on D, ® Fp lifts to a filtration on D, ® Ok for some K/ Qp finite which is induced
by an M-valued cocharacter p,. We may therefore let g /Oy, be an (M, p,)-adapted lifting of ¢
(cf. [55, Definition 4.6]) which corresponds to a point & € .#y(G,X)(Of,). The construction in
[55, Proposition 6.5] gives us a map

x M(Qp)/M(ZP) - XM(A7 b)KM7 g+ 9o
which induces a surjection
M(Qp)/M(Zp) = mo(X™ (N, b))
by [55, Proposition 5.19]. Moreover, the image of ¢ lands in X (p,b)%. Therefore by Theorem
X (1,b)% intersects every connected component of XM (A b)k,,, and hence X (1,b)5 — m0(X (1, b) k)

is a surjection as desired.
0

A.4.4. Proposition implies that |55, Assumption 6.17] is satisfied, hence we obtain Theorem
1A.4.5] below.

Theorem A.4.5. Let p > 2 and (G, X) a Shimura datum of Hodge type with Gq, tamely ramified and
quasi split. We assume that p t |11(Gaer)| and that U, is a very special connected parahoric subgroup
of G(Qp).
(1) Let x € Sy,(G,X)(Fp) and b € G(Qp) theiassociated element. Then there is a G(A’})-
equivariant bijection (where .7, C Sy, (G, X)(IFp) is the isogeny class of x)

2) Each isogeny class of 7y, (G, X)(F,) contains a point x which is the reduction of a special point
P p
on Shy, (G, X). This confirms |28, Conjecture 1].
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